Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Changes in midbrain pain receptor expression, gait and behavioral sensitivity in a rat model of radiculopathy.

Thumbnail
View / Download
1.1 Mb
Date
2012
Authors
Hwang, Priscilla Y
Allen, Kyle D
Shamji, Mohammed F
Jing, Liufang
Mata, Brian A
Gabr, Mostafa A
Huebner, Janet L
Kraus, Virginia B
Richardson, William J
Setton, Lori A
Show More
(10 total)
Repository Usage Stats
252
views
183
downloads
Abstract
Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.
Type
Journal article
Subject
Dorsal root ganglion
gait
intervertebral disc
lumbar radiculopathy
metabotropic glutamate receptor
midbrain
mu-opioid receptor
serotonin receptor.
Permalink
https://hdl.handle.net/10161/7984
Published Version (Please cite this version)
10.2174/1874325001206010383
Publication Info
Hwang, Priscilla Y; Allen, Kyle D; Shamji, Mohammed F; Jing, Liufang; Mata, Brian A; Gabr, Mostafa A; ... Setton, Lori A (2012). Changes in midbrain pain receptor expression, gait and behavioral sensitivity in a rat model of radiculopathy. Open Orthop J, 6. pp. 383-391. 10.2174/1874325001206010383. Retrieved from https://hdl.handle.net/10161/7984.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Gabr

Mostafa Gabr

Research Associate, Senior
Dr. Gabr's research has specifically focused on the following broad areas: (i) animal model of myelopathy, (ii) participating in clinical trials in spine field.In the last few years, this research agenda has expanded to include collaborative projects and publications. Dr. Gabr and his colleagues explore benefit of cervical collar following spine fusion, spinal cord injury model, and transforaminal lumbar interbody fusion.Dr. Gabr is the author of "Interleukin-17 synergizes with IFNI&
Kraus

Virginia Byers Kraus

Professor of Medicine
My special area of expertise is as a clinician scientist investigating osteoarthritis. Osteoarthritis is the most common form of joint disease in man and its incidence increases with age. It is a problem of increasing concern to the medical community due to the increasing longevity of the population. Trained as a molecular biologist and a Rheumatologist, I endeavor to study this disease from bedside to bench. The work in this laboratory focuses on osteoarthritis and deals w

Lori A. Setton

Adjunct Professor of Biomedical Engineering
Research in Setton's laboratory is focused on the role of mechanical factors in the degeneration and repair of soft tissues of the musculoskeletal system, including the intervertebral disc, articular cartilage and meniscus. Work in the Laboratory is focused on engineering and evaluating materials for tissue regeneration and drug delivery. Studies combining engineering and biology are also used to determine the role of mechanical factors to promote and control healing of cartilaginous tissues. Re
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University