Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rolling Isolation Systems: Modeling, Analysis, and Assessment

Thumbnail
View / Download
44.0 Mb
Date
2013
Author
Harvey, Jr., Philip Scott
Advisor
Gavin, Henri P
Repository Usage Stats
376
views
1,175
downloads
Abstract

The rolling isolation system (RIS) studied in this dissertation functions on the principle of a rolling pendulum; an isolated object rests on a steel frame that is supported at its corners by ball-bearings that roll between shallow steel bowls, dynamically decoupling the floor motion from the response of the object. The primary focus of this dissertation is to develop predictive models that can capture experimentally-observed phenomena and to advance the state-of-the-art by proposing new isolation technologies to surmount current performance limitations. To wit, a double RIS increases the system's displacement capacity, and semi-active and passive damped RISs suppress the system's displacement response.

This dissertation illustrates the performance of various high-performance isolation strategies using experimentally-validated predictive models. Effective modeling of RISs is complicated by the nonholonomic and chaotic nature of these systems which to date has not received much attention. Motivated by this observation, the first part of this dissertation addresses the high-fidelity modeling of a single, undamped RIS, and later this theory is augmented to account for the double (or stacked) configuration and the supplemental damping via rubber-coated bowl surfaces. The system's potential energy function (i.e. conical bowl shape) and energy dissipation model are calibrated to free-response experiments. Forced-response experiments successfully validate the models by comparing measured and predicted peak displacement and acceleration responses over a range of operating conditions.

Following the experimental analyses, numerical simulations demonstrate the potential benefits of the proposed technologies. This dissertation presents a method to optimize damping force trajectories subject to constraints imposed by the physical implementation of a particular controllable damper. Potential improvements in terms of acceleration response are shown to be achievable with the semi-active RIS. Finally, extensive time-history analyses establish how the undamped and damped RISs perform when located inside biaxial, hysteretic, multi-story structures under recorded earthquake ground motions. General design recommendations, supported by critical-disturbance spectra and peak-response distributions, are prescribed so as to ensure the uninterrupted operation of vital equipment.

Type
Dissertation
Department
Civil and Environmental Engineering
Subject
Civil engineering
Engineering
Mechanics
equipment isolation
optimal control
rolling isolation
rolling resistance
seismic isolation
vibration suppression
Permalink
https://hdl.handle.net/10161/8012
Citation
Harvey, Jr., Philip Scott (2013). Rolling Isolation Systems: Modeling, Analysis, and Assessment. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8012.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University