Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Object Discovery with a Mobile Robot

Thumbnail
View / Download
25.8 Mb
Date
2013
Author
Mason, Julian
Advisor
Parr, Ronald
Repository Usage Stats
268
views
248
downloads
Abstract

The world is full of objects: cups, phones, computers, books, and

countless other things. For many tasks, robots need to understand that

this object is a stapler, that object is a textbook, and this other

object is a gallon of milk. The classic approach to this problem is

object recognition, which classifies each observation into one of

several previously-defined classes. While modern object recognition

algorithms perform well, they require extensive supervised training:

in a standard benchmark, the training data average more than four

hundred images of each object class.

The cost of manually labeling the training data prohibits these

techniques from scaling to general environments. Homes and workplaces

can contain hundreds of unique objects, and the objects in one

environment may not appear in another.

We propose a different approach: object discovery. Rather than rely on

manual labeling, we describe unsupervised algorithms that leverage the

unique capabilities of a mobile robot to discover the objects (and

classes of objects) in an environment. Because our algorithms are

unsupervised, they scale gracefully to large, general environments

over long periods of time. To validate our results, we collected 67

robotic runs through a large office environment. This dataset, which

we have made available to the community, is the largest of its kind.

At each step, we treat the problem as one of robotics, not disembodied

computer vision. The scale and quality of our results demonstrate the

merit of this perspective, and prove the practicality of long-term

large-scale object discovery.

Type
Dissertation
Department
Computer Science
Subject
Computer science
Permalink
https://hdl.handle.net/10161/8061
Citation
Mason, Julian (2013). Object Discovery with a Mobile Robot. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8061.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University