Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structured Bayesian learning through mixture models

Thumbnail
View / Download
1.8 Mb
Date
2013
Author
PETRALIA, FRANCESCA
Advisor
PETRALIA, FRANCESCA
Repository Usage Stats
369
views
384
downloads
Abstract

In this thesis, we develop some Bayesian mixture density estimation for univariate and multivariate data. We start proposing a repulsive process favoring mixture components further apart. While conducting inferences on the cluster-specific parameters, current frequentist and Bayesian methods often encounter problems when clusters are placed too close together to be scientifically meaningful. Current Bayesian practice generates component-specific parameters independently from a common prior, which tends to favor similar components and often leads to substantial probability assigned to redundant components that are not needed to fit the data. As an alternative, we propose to generate components from a repulsive process, which leads to fewer, better separated and more interpretable clusters.

In the second part of the thesis, we face the problem of modeling the conditional distribution of a response variable given a high dimensional vector of predictors potentially concentrated near a lower dimensional subspace or manifold. In many settings it is important to allow not only the mean but also the variance and shape of the response density to change flexibly with features, which are massive-dimensional. We propose a multiresolution model that scales efficiently to massive numbers of features, and can be implemented efficiently with slice sampling.

In the third part of the thesis, we deal with the problem of characterizing the conditional density of a multivariate vector of response given a potentially high dimensional vector of predictors. The proposed model flexibly characterizes the density of the response variable by hierarchically coupling a collection of factor models, each one defined on a different scale of resolution. As it is illustrated in Chapter 4, our proposed method achieves good predictive performance compared to competitive models while efficiently scaling to high dimensional predictors.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Bayesian density estimation
Bayesian Nonparametric
Mixture Models
Permalink
https://hdl.handle.net/10161/8065
Citation
PETRALIA, FRANCESCA (2013). Structured Bayesian learning through mixture models. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8065.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University