Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MOLECULAR DISSECTION AND FUNCTIONAL DEFINITION OF ESTROGEN-RELATED RECEPTOR ALPHA SIGNALING PATHWAY

Thumbnail
View / Download
2.6 Mb
Date
2013
Author
Liu, Junfei
Advisors
McDonnell, Donald P
Greenleaf, Arno L
Repository Usage Stats
288
views
205
downloads
Abstract

The estrogen-related receptor alpha (ERRα) is an orphan nuclear receptor (NR) with no natural ligand identified. Recent studies report that ERRα expression and activity correlate with poor prognosis in breast cancer. It is also suggested that ERRα is involved in tumor growth and progression, thus this receptor may be a therapeutic target in the treatment of breast cancer. However, the specific role of ERRα in breast cancer is not fully understood. Similar to other nuclear receptors, ERR has been suggested to regulate target gene transcription through both classical (direct DNA binding) and non-canonical (tethering mechanisms) to effect various aspects of tumor pathogenesis, such as angiogenesis, regulation of hypoxic response, tumor growth, and migration. Thus, the objective of this dissertation research is to explore the roles of ERRα in breast cancer by (a) identifying novel ERRα target genes important for tumor pathogenesis, (b) characterizing the molecular mechanism of non-canonical actions of ERRα-mediated gene transcription, and (c) examining the structure basis of ERRα antagonism for future pharmaceutical exploitation. First, we identified an ERRα target gene, ECM1, which is relevant to breast cancer angiogenesis. The role of ECM1 in angiogenesis was confirmed by endothelial tube formation assay. We further showed that knocking down ECM1 has a dramatic inhibitory effect on tumor xenograft growth. This result, for the first time, directly demonstrates the role of ECM1 in tumor environment and further sheds light on the significance of ERR&alpha-regulated genes in tumors angiogenesis. Next, we explored the molecular mechanism of ERRα non-canonical pathways using transcriptional reporter assay and ERRα DNA-binding domain (DBD) mutants. We discovered that the expression of carbonic anhydrase 9 (CA9), a target gene of one of the ERRα tethering partner hypoxia inducible factor-1 (HIF-1), does not require direct binding of ERRα to DNA but its DBD is indispensible. These results reflect on the importance of ERRα DBD even in the non-canonical signaling of ERRα, which brings challenges to dissecting ERRα canonical/non-canonical pathways in the future. Finally, to determine the molecular mechanisms underlying ERRα antagonism, we probed the conformations of ERRα upon antagonist treatments. M13 phage display was used to screen for ERRα-interacting peptides. We identified peptides that interact with ERRα in the activation function 2 (AF2) domain, some of which are able to distinguish the binding of different classes of ERRα antagonists. Cumulatively, these studies have explored the biological functions of ERRα and the molecular basis ERRα-mediated signaling pathways.

Type
Dissertation
Department
Biochemistry
Subject
Biochemistry
Permalink
https://hdl.handle.net/10161/8078
Citation
Liu, Junfei (2013). MOLECULAR DISSECTION AND FUNCTIONAL DEFINITION OF ESTROGEN-RELATED RECEPTOR ALPHA SIGNALING PATHWAY. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8078.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University