Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon/Metal  Oxide  Composites  and  Their  Application  in  Lithium-­Ion  Batteries

Thumbnail
View / Download
18.2 Mb
Date
2013
Author
Cai, Yue
Advisor
Liu, Jie
Repository Usage Stats
843
views
412
downloads
Abstract

The  first  chapter  introduces  the  background  about  energy  storage  and  lithium   ion  battery.  The  concepts  of  graphene,  carbon  nanotube,  and  carbon  aerogel  were   covered  as  well.  Then  powder-­based  metal  oxide-­carbon  composite  materials  and   binder-­free  CNT-­metal  oxide  films  for  lithium  storage  applications  were  further   elaborated.  Finally,  the  significance  of  our  research  was  summarized.  

The  second  chapter  is  about  freestanding  and  highly  conductive   Fe3O4/Graphene/CNT  film  as  lithium-­ion  battery  anodes.  Iron  oxide  is  intensively   studied  as  a  lithium-ion  battery  anode  material  due  to  its  high  theoretical  specific   capacity,  but  it  has  low  conductivity  and  poor  cycling  performance.  Herein,  we  present   the  design  of  freestanding  Fe3O4/graphene/Carbon  nanotube  film  via  in-­‐‑situ  growth  by   solvothermal  reaction,  vacuum  filtration  and  annealing  methods.  The  film  had  a  sheet   resistance  of  23  Ω/☐  and  a  BET  surface  area  of  132  m2/g.  The  synergistic  effect  of   graphene  and  CNTs  provide  a  flexible  matrix  to  accommodate  the  volume  change  of   metal  oxide  in  lithium  ion  batteries  application.  This  lightweight  film  was  tested  without   using  a  current  collector,  binder  and  conducting  additives,  eliminating  unnecessary   weight  in  the  overall  devices.  The  film  shows  excellent  cyclic  performances,  and  stable   rate  capability.  The  specific  capacity  retained  803  mAh/g  at  the  rate  of  200  mA/g  after  50   cycles.  This  method  demonstrated  a  promising  path  for  flexible  energy  storage  devices.

The  third  chapter  discusses  facile  synthesis  of  three‑dimensional  TiO2/carbon  co-­aerogel  nanostructures  and  their  applications  for  energy  storage.  In  the  field  of  energy   storage,  it  is  important  to  design  new  materials  and  understand  the  fundamental   principles  of  the  electrode  structure.  Facile  synthesis  of  TiO2/carbon  co-aerogel  material   via  a  sol-­gel  method  was  discussed.  This  new  material  was  composed  of  a  3-­D   interconnected  network  of  TiO2  and  carbon  aerogel.  TEM,  SEM,  XRD,  BET  SA,  and   electrochemistry  measurements  were  discussed.  With  an  operating  voltage  between  0.05   and  3.00  V,  the  discharge  capacity  was  ~400  mAh/g  at  168  mA/g  current  density.  

Type
Master's thesis
Department
Chemistry
Subject
Chemistry
Permalink
https://hdl.handle.net/10161/8096
Citation
Cai, Yue (2013). Carbon/Metal  Oxide  Composites  and  Their  Application  in  Lithium-­Ion  Batteries. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/8096.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University