Crack Nucleation and Branching in the eXtended Finite Element Method
The eXtended Finite Element Method (X-FEM) has proven to be a robust method for simulating crack propagation, but relatively little work has focused on the important problem of crack initiation or nucleation. In this work, we examine various options for nucleating cracks within a cohesive framework and the X-FEM. Attention is confined to shell problems. We discuss the details of the methods and their strengths and weaknesses. With the introduction of such nucleation algorithms, the need to model more complex crack growth topologies also arises. In particular, we examine algorithms for enabling crack branching, focusing on both the mechanics and element kinematic considerations. The results of various benchmark problems for the nucleation and branching algorithms are also presented and discussed.
Mechanical engineering
Materials Science
branching
crack
elements
finite
nucleation
XFEM

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Masters Theses
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info