Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Distributed Optimal Control Approach for Multi-agent Trajectory Optimization

Thumbnail
View / Download
20.4 Mb
Date
2013
Author
Foderaro, Greg
Advisor
Ferrari, Silvia
Repository Usage Stats
535
views
403
downloads
Abstract

This dissertation presents a novel distributed optimal control (DOC) problem formulation that is applicable to multiscale dynamical systems comprised of numerous interacting systems, or agents, that together give rise to coherent macroscopic behaviors, or coarse dynamics, that can be modeled by partial differential equations (PDEs) on larger spatial and time scales. The DOC methodology seeks to obtain optimal agent state and control trajectories by representing the system's performance as an integral cost function of the macroscopic state, which is optimized subject to the agents' dynamics. The macroscopic state is identified as a time-varying probability density function to which the states of the individual agents can be mapped via a restriction operator. Optimality conditions for the DOC problem are derived analytically, and the optimal trajectories of the macroscopic state and control are computed using direct and indirect optimization algorithms. Feedback microscopic control laws are then derived from the optimal macroscopic description using a potential function approach.

The DOC approach is demonstrated numerically through benchmark multi-agent trajectory optimization problems, where large systems of agents were given the objectives of traveling to goal state distributions, avoiding obstacles, maintaining formations, and minimizing energy consumption through control. Comparisons are provided between the direct and indirect optimization techniques, as well as existing methods from the literature, and a computational complexity analysis is presented. The methodology is also applied to a track coverage optimization problem for the control of distributed networks of mobile omnidirectional sensors, where the sensors move to maximize the probability of track detection of a known distribution of mobile targets traversing a region of interest (ROI). Through extensive simulations, DOC is shown to outperform several existing sensor deployment and control strategies. Furthermore, the computation required by the DOC algorithm is proven to be far reduced compared to that of classical, direct optimal control algorithms.

Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Mechanical engineering
Distributed control
Mobile sensor networks
Multi-agent systems
Multiscale dynamical systems
Optimal control
Trajectory optimization
Permalink
https://hdl.handle.net/10161/8226
Citation
Foderaro, Greg (2013). A Distributed Optimal Control Approach for Multi-agent Trajectory Optimization. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8226.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University