Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seafloor photo-geology and sonar terrain modeling at the 9°N overlapping spreading center, East Pacific Rise

View / Download
2.1 Mb
Date
2013-12-01
Authors
Klein, Emily M
White, Scott M
Nunnery, James Andrew
Mason-Stack, Jessica L
Wanless, V Dorsey
Perfit, Michael R
Waters, Christopher L
Sims, Kenneth WW
Fornari, Daniel J
Zaino, Anne J
Ridley, W Ian
Show More
(11 total)
Repository Usage Stats
168
views
357
downloads
Abstract
A fundamental goal in the study of mid-ocean ridges is to understand the relationship between the distribution of melt at depth and seafloor features. Building on geophysical information on subsurface melt at the 9°N overlapping spreading center on the East Pacific Rise, we use terrain modeling (DSL-120A side scan and bathymetry), photo-geology (Jason II and WHOI TowCam), and geochemical data to explore this relationship. Terrain modeling identified four distinct geomorphic provinces with common seafloor characteristics that correspond well to changes in subsurface melt distribution. Visual observations were used to interpret terrain modeling results and to establish a relative seafloor age scale, calibrated with radiometric age dates, to identify areas of recent volcanism. On the east limb, recent eruptions in the north are localized over the margins of the 4 km wide asymmetric melt sill, forming a prominent off-axis pillow ridge. Along the southern east limb, recent eruptions occur along a neovolcanic ridge that hugs the overlap basin and lies several kilometers west of the plunging melt sill. Our results suggest that long-term southward migration of the east limb occurs through a series of diking events with a net southward propagation direction. Examining sites of recent eruptions in the context of geophysical data on melt distribution in the crust and upper mantle suggests melt may follow complex paths from depth to the surface. Overall, our findings emphasize the value of integrating information obtained from photo-geology, terrain modeling, lava geochemistry and petrography, and geophysics to constrain the nature of melt delivery at mid-ocean ridges. Key Points Terrain modeling and photogeology show links between eruptions and crustal melt Eruptions above 4-km wide melt sill occur only above sill's margins Terrain modeling found four provinces that differ from classic tectonic view of OSC © 2013 The Authors. Geochemistry, Geophysics, Geosystems published by Wiley Periodicals, Inc. on behalf of American Geophysical Union.
Type
Journal article
Permalink
https://hdl.handle.net/10161/8325
Published Version (Please cite this version)
10.1002/2013GC004858
Publication Info
Klein, Emily M; White, Scott M; Nunnery, James Andrew; Mason-Stack, Jessica L; Wanless, V Dorsey; Perfit, Michael R; ... Ridley, W Ian (2013). Seafloor photo-geology and sonar terrain modeling at the 9°N overlapping spreading center, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 14(12). pp. 5146-5170. 10.1002/2013GC004858. Retrieved from https://hdl.handle.net/10161/8325.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Klein

Emily M. Klein

Professor
Dr. Klein's research focuses on the geochemistry of oceanic basalts, using diverse tools of major, trace and isotopic analyses. Her research involves sea-going expeditions to sample and map the ocean floor.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University