Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo.

Thumbnail
View / Download
3.1 Mb
Date
2014-04-15
Authors
Juhas, Mark
Engelmayr, George C
Fontanella, Andrew N
Palmer, Gregory M
Bursac, Nenad
Repository Usage Stats
2,362
views
1,237
downloads
Abstract
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Type
Journal article
Subject
angiogenesis
contractile force
self-repair
tissue engineering
window chamber
Animals
Biomimetics
Cobra Cardiotoxin Proteins
Mice
Mice, Nude
Microvessels
Muscle Contraction
Muscle Development
Muscle, Skeletal
Tissue Engineering
Permalink
https://hdl.handle.net/10161/8413
Published Version (Please cite this version)
10.1073/pnas.1402723111
Publication Info
Juhas, Mark; Engelmayr, George C; Fontanella, Andrew N; Palmer, Gregory M; & Bursac, Nenad (2014). Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A, 111(15). pp. 5508-5513. 10.1073/pnas.1402723111. Retrieved from https://hdl.handle.net/10161/8413.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bursac

Nenad Bursac

Professor of Biomedical Engineering
Bursac's research interests include: Stem cell, tissue engineering, and gene based therapies for heart and muscle regeneration; Cardiac electrophysiology and arrhythmias; Organ-on-chip and tissue engineering technologies for disease modeling and therapeutic screening; Small and large animal models of heart and muscle injury, disease, and regeneration. The focus of my research is on application of pluripotent stem cells, tissue engineering, and gene therapy technologies for: 1) basic s
Palmer

Gregory M. Palmer

Associate Professor of Radiation Oncology
Greg Palmer obtained his B.S. in Biomedical Engineering from Marquette University in 2000, after which he obtained his Ph.D. in BME from the University of Wisconsin, Madison. He is currently an Associate Professor in the Department of Radiation Oncology, Cancer Biology Division at Duke University Medical Center. His primary research focus has been identifying and exploiting the changes in absorption, scattering, and fluorescence properties of tissue associated with cancer progression and therape
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University