Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs.

Thumbnail
View / Download
1.8 Mb
Date
2013
Authors
Jiang, Wei
Zhang, Donghui
Bursac, Nenad
Zhang, Yi
Repository Usage Stats
201
views
228
downloads
Abstract
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However, the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here, we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition, manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally, analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively, our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs.
Type
Journal article
Subject
Biomarkers
Cell Differentiation
Cell Lineage
Cells, Cultured
Embryonic Stem Cells
Endoderm
Humans
Induced Pluripotent Stem Cells
RNA, Messenger
Wnt3 Protein
Permalink
https://hdl.handle.net/10161/8425
Published Version (Please cite this version)
10.1016/j.stemcr.2013.03.003
Publication Info
Jiang, Wei; Zhang, Donghui; Bursac, Nenad; & Zhang, Yi (2013). WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports, 1(1). pp. 46-52. 10.1016/j.stemcr.2013.03.003. Retrieved from https://hdl.handle.net/10161/8425.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bursac

Nenad Bursac

Professor of Biomedical Engineering
Bursac's research interests include: Stem cell, tissue engineering, and gene based therapies for heart and muscle regeneration; Cardiac electrophysiology and arrhythmias; Organ-on-chip and tissue engineering technologies for disease modeling and therapeutic screening; Small and large animal models of heart and muscle injury, disease, and regeneration. The focus of my research is on application of pluripotent stem cells, tissue engineering, and gene therapy technologies for: 1) basic s
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University