Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phylodynamic Methods for Infectious Disease Epidemiology

Thumbnail
View / Download
6.1 Mb
Date
2014
Author
Rasmussen, David Alan
Advisor
Koelle, Katia
Repository Usage Stats
435
views
675
downloads
Abstract

In this dissertation, I present a general statistical framework for phylodynamic inference that can be used to estimate epidemiological parameters and reconstruct disease dynamics from pathogen genealogies. This framework can be used to fit a broad class of epidemiological models, including nonlinear stochastic models, to genealogies by relating the population dynamics of a pathogen to its genealogy using coalescent theory. By combining Markov chain Monte Carlo and particle filtering methods, efficient Bayesian inference of all parameters and unobserved latent variables is possible even when analytical likelihood expressions are not available under the epidemiological model. Through extensive simulations, I show that this method can be used to reliably estimate epidemiological parameters of interest as well as reconstruct past disease dynamics from genealogies, or jointly from genealogies and other common sources of epidemiological data like time series. I then extend this basic framework to include different types of host population structure, including models with spatial structure, multiple-hosts or vectors, and different stages of infection. The later is demonstrated by using a multistage model of HIV infection to estimate stage-specific transmission rates and incidence from HIV sequence data collected in Detroit, Michigan. Finally, to demonstrate how the approach can be used more generally, I consider the case of dengue virus in southern Vietnam. I show how earlier phylodynamic inference methods fail to reliably reconstruct the dynamics of dengue observed in hospitalization data, but by deriving coalescent models that take into consideration ecological complexities like seasonality, vector dynamics and spatial structure, accurate dynamics can be reconstructed from genealogies. In sum, by extending phylodynamics to include more ecologically realistic and mechanistic models, this framework can provide more accurate estimates and give deeper insight into the processes driving infectious disease dynamics.

Type
Dissertation
Department
Biology
Subject
Epidemiology
Statistics
Biology
Coalescent
Dengue
HIV
Infectious disease
Phylodynamics
Statistical inference
Permalink
https://hdl.handle.net/10161/8701
Citation
Rasmussen, David Alan (2014). Phylodynamic Methods for Infectious Disease Epidemiology. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8701.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University