Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure Activity Relationships in the Fracture of Hybrid Covalent/Metallosupramolecular Organogels

Thumbnail
View / Download
3.0 Mb
Date
2014
Author
Hawk, Jennifer Lee
Advisor
Craig, Stephen L
Repository Usage Stats
192
views
158
downloads
Abstract

Hybrid polymeric networks constructed using both covalent and reversible cross-links have been shown to be effective in preventing fracture and ultimately failure in polymeric materials. The prevention of failure has been largely attributed to the ability of the reversible cross-links to dissipate energy without breaking the covalent cross-links. The ability to rationally design materials that optimize this strategy would benefit from quantitative and systematic studies of the relationship between the number and strength of reversible interactions and the failure behavior of hybrid networks. This dissertation describe studies of fracture under compression in a family of hybrid networks, in which the timescale of reversible cross-linker dissociation is varied over several orders of magnitude, whereas the covalent components are kept constant.

Polymeric networks were constructed with 4-vinylpyridine. Bimetallic pincer Pd and Pt complexes were inserted into the network, forming reversible metal-ligand bonds that cross-link pyridine residues. The additional reversible cross-links prolong the lifetime of the hybrid networks under compressive strain when compared to their covalent counterparts. The observed failure behavior is dependent on the rate at which the networks are compressed as well as the strength of reversible interaction. Most interestingly, the addition of very dynamic and weak reversible interactions, so weak as to make no measurable contribution to bulk modulus, still leads to enhanced fracture strains. The failure of the covalent component within these hybrid networks was probed directly by incorporating a mechanophore that emits light upon chain scission. It was confirmed that the addition of these dynamic and weak reversible cross-links delays the catastrophic bond scission events associated with failure in the materials.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
Polymer chemistry
Fracture
Network
Organogels
Polymer
Supramolecular
Permalink
https://hdl.handle.net/10161/8724
Citation
Hawk, Jennifer Lee (2014). Structure Activity Relationships in the Fracture of Hybrid Covalent/Metallosupramolecular Organogels. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8724.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University