Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural Basis for Protein Recognition, Acyl-substrate Delivery, and Product Release by ACP in the Biosynthesis of Lipid A

Thumbnail
View / Download
309.4 Mb
Date
2014
Author
Masoudi, S. Ali
Advisors
Zhou, Pei
Brennan, Richard
Repository Usage Stats
260
views
102
downloads
Abstract

Acyl-carrier-protein (ACP) is the principal transporter of fatty acids, coordinating acyl-transfer among a vast network of diverse enzymes and biochemical processes. ACP association with protein partners is thought to be exceedingly transient. This paradigm has posed challenges for understanding the molecular basis for acyl-delivery and dissociation. During biosynthesis of the lipid A component (endotoxin) of lipopolysaccharides, ACP shuttles acyl-intermediates thioester-linked to its 4'-phosphopantetheine arm among four acyltransferases: LpxA, LpxD, LpxL, and LpxM. LpxA and LpxD are essential cytoplasmic enzymes, which not only provide an excellent model system to study ACP-based interaction, but also offer an important therapeutic target for development of novel antibiotics. The current dissertation reports the crystal structures of three forms of <italic>Escherichia coli</italic> ACP engaging LpxD, which represent stalled substrate and breakage products along the reaction coordinate. The structures reveal the intricate interactions at the interface that optimally position ACP for acyl-delivery and directly involve the pantetheinyl group. Conformational differences among the stalled ACPs provide the molecular basis for the association-dissociation process. An unanticipated conformational shift of 4'-phosphopantetheine groups within the LpxD catalytic chamber reveals an unprecedented role of ACP in product release. Moreover, the crystal structure of <italic>E. coli</italic> LpxA in complex with one form of ACP (holo-ACP) is presented. The structure reveals three molecules of holo-ACP localize to the C-terminal domain of the LpxA homotrimer, and shows the functional role of this domain is two-fold: ACP recognition and nucleotide binding of UDP-GlcNAc. A comparison with the LpxD:ACP complexes uncovers that ACP utilizes different surface residues for recognition even amongst closely related acyltransferases, yet still relies on "electrostatic steering" for docking to its enzyme partner. Insights gleaned from the presented structures have provided not only a better understanding of ACP interaction with acyltransferases, but also has identified the "drugable molecular landscape" for the development of novel antibiotics against infective bacteria.

Type
Dissertation
Department
Biochemistry
Subject
Biochemistry
ACP
acyl carrier protein
LpxA acyltransferase
LpxD acyltransferase
Product release
Permalink
https://hdl.handle.net/10161/8744
Citation
Masoudi, S. Ali (2014). Structural Basis for Protein Recognition, Acyl-substrate Delivery, and Product Release by ACP in the Biosynthesis of Lipid A. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8744.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University