Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Water Quality Models for Shellfish Harvesting Area Management

Thumbnail
View / Download
1022.0 Kb
Date
2008-08-19
Author
Gronewold, Andrew
Advisors
Reckhow, Kenneth H
Wolpert, Robert L
Repository Usage Stats
416
views
768
downloads
Abstract

This doctoral dissertation presents the derivation and application of a series of water quality models and modeling strategies which provide critical guidance to water quality-based management decisions. Each model focuses on identifying and explicitly acknowledging uncertainty and variability in terrestrial and aquatic environments, and in water quality sampling and analysis procedures. While the modeling tools I have developed can be used to assist management decisions in waters with a wide range of designated uses, my research focuses on developing tools which can be integrated into a probabilistic or Bayesian network model supporting total maximum daily load (TMDL) assessments of impaired shellfish harvesting waters. Notable products of my research include a novel approach to assessing fecal indicator bacteria (FIB)-based water quality standards for impaired resource waters and new standards based on distributional parameters of the in situ FIB concentration probability distribution (as opposed to the current approach of using most probable number (MPN) or colony-forming unit (CFU) values). In addition, I develop a model explicitly acknowledging the probabilistic basis for calculating MPN and CFU values to determine whether a change in North Carolina Department of Environment and Natural Resources Shellfish Sanitation Section (NCDENR-SSS) standard operating procedure from a multiple tube fermentation (MTF)-based procedure to a membrane filtration (MF) procedure might cause a change in the observed frequency of water quality standard violations. This comparison is based on an innovative theoretical model of the MPN probability distribution for any observed CFU estimate from the same water quality sample, and is applied to recent water quality samples collected and analyzed by NCDENR-SSS for fecal coliform concentration using both MTF and MF analysis tests. I also develop the graphical model structure for a Bayesian network model relating FIB fate and transport processes with water quality-based management decisions, and encode a simplified version of the model in commercially available Bayesian network software. Finally, I present a Bayesian strategy for calibrating bacterial water quality models which improves model performance by explicitly acknowledging the probabilistic relationship between in situ FIB concentrations and common concentration estimating procedures.

Type
Dissertation
Department
Environment
Subject
Environmental Sciences
Engineering, Environmental
Statistics
Permalink
https://hdl.handle.net/10161/898
Citation
Gronewold, Andrew (2008). Water Quality Models for Shellfish Harvesting Area Management. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/898.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University