Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models

Thumbnail
View / Download
1.7 Mb
Date
2014-07-28
Authors
Brown, PT
Li, W
Li, L
Ming, Y
Repository Usage Stats
347
views
406
downloads
Abstract
Much recent work has focused on unforced global mean surface air temperature (T) variability associated with the efficiency of heat transport into the deep ocean. Here the relationship between unforced variability in T and the Earth's top-of-atmosphere (TOA) energy balance is explored in preindustrial control runs of the Coupled Model Intercomparison Project Phase 5 multimodel ensemble. It is found that large decadal scale variations in T tend to be significantly enhanced by the net energy flux at the TOA. This indicates that unforced decadal variability in T is not only caused by a redistribution of heat within the climate system but can also be associated with unforced changes in the total amount of heat in the climate system. It is found that the net TOA radiation imbalances result mostly from changes in albedo associated with the Interdecadal Pacific Oscillation that temporarily counteracts the climate system's outgoing longwave (i.e., Stefan-Boltzmann) response to T change. © 2014. American Geophysical Union. All Rights Reserved.
Type
Journal article
Permalink
https://hdl.handle.net/10161/9167
Published Version (Please cite this version)
10.1002/2014GL060625
Publication Info
Brown, PT; Li, W; Li, L; & Ming, Y (2014). Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophysical Research Letters, 41(14). pp. 5175-5183. 10.1002/2014GL060625. Retrieved from https://hdl.handle.net/10161/9167.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Li

Wenhong Li

Associate Professor of Climate
Dr. Li's research interests focus primarily on climate dynamics, land-atmosphere interaction, hydroclimatology, and climate modeling. Her current research is to understand how the hydrological cycle changes in the current and future climate and their impacts on the ecosystems, subtropical high variability and change, unforced global temperature variability, and climate and health issues.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University