Implant healing in experimental animal models of diabetes.

Loading...
Thumbnail Image

Date

2011-05-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

244
views
229
downloads

Citation Stats

Abstract

Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1177/193229681100500315

Publication Info

Le, NN, MB Rose, H Levinson and B Klitzman (2011). Implant healing in experimental animal models of diabetes. J Diabetes Sci Technol, 5(3). pp. 605–618. 10.1177/193229681100500315 Retrieved from https://hdl.handle.net/10161/9195.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Klitzman

Bruce Klitzman

Associate Professor Emeritus in Surgery

Our overriding interests are in the fields of tissue engineering, wound healing, biosensors, and long term improvement of medical device implantation. My basic research interests are in the area of physiological mechanisms of optimizing substrate transport to tissue. This broad topic covers studies on a whole animal, whole organ, hemorheological, microvascular, cellular, ultrastructural, and molecular level. The current projects include:
1) control of blood flow and flow distribution in the microcirculation,
2) the effects of long-term synthetic and biologic implants on substrate transport to tissues,
3) tissue engineering; combining isolated cells, especially adult stem cells, with biomaterials to form specialized composite structures for implantation, with particular emphasis on endothelial cell physiology and its alteration by isolation and seeding on biomaterials.
4) decreasing the thrombogenicity of synthetic blood vessels and other blood-contacting devices, and improving their overall performance and biocompatibility.
5) reducing tissue damage resulting from abnormal perfusion (e.g., relative ischemia, anoxia, etc.) and therapies which minimize ischemic damage.
6) biosensor function, particularly glucose sensors in normal and diabetics.
7) measurement of tissue blood flow and oxygenation as an indicator of tissue viability and functional potential.
8) development of biocompatible materials for soft tissue reconstruction or augmentation.
9) improving performance of glaucoma drainage devices by directing a more favorable foreign body reaction
10) wound healing; particularly internal healing around foreign materials and the effect and prevention of microbes around implanted devices.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.