Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators.

Thumbnail
View / Download
2.2 Mb
Date
2014-09
Authors
Rosin, David P
Rontani, Damien
Haynes, Nicholas D
Schöll, Eckehard
Gauthier, Daniel J
Repository Usage Stats
191
views
329
downloads
Abstract
We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.
Type
Journal article
Subject
Electronics
Logic
Models, Theoretical
Time Factors
Permalink
https://hdl.handle.net/10161/9271
Published Version (Please cite this version)
10.1103/PhysRevE.90.030902
Publication Info
Rosin, David P; Rontani, Damien; Haynes, Nicholas D; Schöll, Eckehard; & Gauthier, Daniel J (2014). Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators. Phys Rev E Stat Nonlin Soft Matter Phys, 90(3). pp. 030902. 10.1103/PhysRevE.90.030902. Retrieved from https://hdl.handle.net/10161/9271.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Gauthier

Daniel J. Gauthier

Research Professor of Physics
Prof. Gauthier is interested in a broad range of topics in the fields of nonlinear and quantum optics, and nonlinear dynamical systems. In the area of optical physics, his group is studying the fundamental characteristics of highly nonlinear light-matter interactions at both the classical and quantum levels and is using this understanding to develop practical devices. At the quantum level, his group has three major efforts in the area of quantum communication and networking. I
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University