Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Mosquito Abundance in Temperate Regions, Using Ecological, Hydrological and Remote Sensing Models

Thumbnail
View / Download
4.6 Mb
Date
2014
Author
Jian, Yun
Advisors
Marani, Marco
Pan, William
Repository Usage Stats
291
views
502
downloads
Abstract

New and old mosquito-borne diseases have emerged and re-emerged in temperate regions over the recent past, but an understanding of mosquito population dynamics, a fundamental step toward disease control, remains elusive. In particular, we are still lacking reliable predictive models of mosquito abundance in temperate areas due to the subtle links between the fluctuation of mosquito population and highly heterogeneous environmental drivers. Hence, this doctoral dissertation presents an interdisciplinary approach towards an improved understanding and prediction of the fluctuations in mosquito abundance in temperate regions. In the first part of this dissertation a hierarchical Gompertz-based model is used to assess the relative importance of endogenous (density dependence) and exogenous (environmental forcings) controls and their interactions in regulating the dynamics of a West Nile Virus vector (Culex pipiens) in the Po River delta in Italy. The results clearly detect the effects of density-dependence in the observed population dynamics for the mosquito species analyzed and highlight the controls exerted by environmental forcings and habitat conditions. Subsequently, the characteristic scales of temporal variability in mosquito populations, and the representativeness of observations at different sampling resolutions, are investigated using a 10 year daily mosquito sample from Brunswick County, North Carolina. The species present in the sample (among which Aedes vexans and Culiseta melanura are addressed in greater detail, as vectors of East Equine Encephalitis and West Nile Virus) are investigated using a combination of time series analysis, individual based simulations, and density-dependent modeling approaches. Significant population fluctuations with characteristic periodicity between 2 days and several years are found in response to different regulation mechanisms. In particular, the observed fast fluctuations are importantly determined by a varying mosquito activity, rather than by reproduction/mortality processes, driven by rapid changes in meteorological conditions. Finally, in the third part of this study, a state space reconstruction (SSR) approach is used to understand how the predictability of mosquito abundance varies with aggregation time scale and with the prediction horizon, and how much can the prediction of mosquito abundance be improved by using daily observations compared to the commonly used once-per-week samples. The results show that the predictability of mosquito abundance decreases as the time scale of the models increases from one week to one month, while the predictability of per capita growth rate increases together with the modeling scale. It is also shown that the prediction of mosquito per capita growth rate can be improved using daily abundance observations. Furthermore, many mosquito models compare the observed and predicted abundance as a measure of model performance. However, my results suggest that short term forecasts of mosquito abundance may appear to have a significant capability due to the positive autocorrelation between abundance in subsequent time steps, even when the model's ability to predict the abundance change is low. Model capability should thus be evaluated comparing observed and modelled per capita rates of change.

Type
Dissertation
Department
Environment
Subject
Environmental science
Ecology
Environmental health
Density dependence
Hydrologic drivers of population dynamics
Mosquito activity
Mosquito population dynamics
Mosquito sampling
Temporal scales
Permalink
https://hdl.handle.net/10161/9436
Citation
Jian, Yun (2014). Prediction of Mosquito Abundance in Temperate Regions, Using Ecological, Hydrological and Remote Sensing Models. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9436.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University