Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Beyond A Simple Composite of Metal Oxide/Graphene/Carbon Nanotubes: Controlling Nanostructured Electrodes at Macroscopic Scale

Thumbnail
View / Download
3.6 Mb
Date
2014
Author
Sedloff, Jennifer Wedebrock
Advisor
Liu, Jie
Repository Usage Stats
330
views
163
downloads
Abstract

The development of electronic textiles, which have many potential healthcare and consumer applications, is currently limited by a lack of energy storage that can be effectively incorporated into such devices while having sufficient energy density, power density, and durability to perform well. The overall goal of this work was to improve the energy density and potential for use in electronic textile applications of a nanostructured composite of few-walled carbon nanotubes, manganese oxide, and reduced graphene oxide. Two approaches towards improving the desired properties by controlling the macroscopic structure of the composite were pursued: one, to make fiber or wire-shaped electrodes via wet-spinning in aqueous chitosan solutions (10% acetic acid), and the other, to make composite films with controlled porous structures using nitrocellulose as a sacrificial filler material. Both approaches yielded the desired macroscopic structures. The composite fibers were non-conductive due to the insulating nature of manganese oxide and its positioning on the surface of the fibers. Composite fibers of few-walled carbon nanotubes and reduced graphene oxide made by the same method were found to have good volumetric capacity, rate capability, stability and flexibility. Nonintuitively, electrochemical performance of composite films declined with increasing porosity due to a decrease in conductivity, highlighting the importance of balancing the interplay between properties important to device performance when designing controlled structures of complex materials.

Type
Master's thesis
Department
Chemistry
Subject
Chemistry
carbon nanotube
fiber
graphene
manganese oxide
nanocomposite
supercapacitor
Permalink
https://hdl.handle.net/10161/9452
Citation
Sedloff, Jennifer Wedebrock (2014). Beyond A Simple Composite of Metal Oxide/Graphene/Carbon Nanotubes: Controlling Nanostructured Electrodes at Macroscopic Scale. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/9452.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University