Show simple item record

Invariant measure selection by noise. An example

dc.contributor.author Mattingly, Jonathan C
dc.contributor.author Pardoux, Etienne
dc.date.accessioned 2015-03-20T17:40:15Z
dc.date.issued 2014-01-01
dc.identifier.issn 1078-0947
dc.identifier.uri https://hdl.handle.net/10161/9511
dc.description.abstract We consider a deterministic system with two conserved quantities and infinity many invariant measures. However the systems possess a unique invariant measure when enough stochastic forcing and balancing dissipation are added. We then show that as the forcing and dissipation are removed a unique limit of the deterministic system is selected. The exact structure of the limiting measure depends on the specifics of the stochastic forcing.
dc.publisher American Institute of Mathematical Sciences (AIMS)
dc.relation.ispartof Discrete and Continuous Dynamical Systems- Series A
dc.relation.isversionof 10.3934/dcds.2014.34.4223
dc.title Invariant measure selection by noise. An example
dc.type Journal article
duke.contributor.id Mattingly, Jonathan C|0297691
pubs.begin-page 4223
pubs.end-page 4257
pubs.issue 10
pubs.organisational-group Duke
pubs.organisational-group Mathematics
pubs.organisational-group Statistical Science
pubs.organisational-group Trinity College of Arts & Sciences
pubs.publication-status Published
pubs.volume 34
dc.identifier.eissn 1553-5231
duke.contributor.orcid Mattingly, Jonathan C|0000-0002-1819-729X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record