Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impacts of green infrastructure implementation within the Neuse River Basin

Thumbnail
View / Download
25.7 Mb
Date
2015-04-24
Author
Green, Benjamin
Advisor
Doyle, Martin
Repository Usage Stats
295
views
543
downloads
Abstract
American Rivers is advocating for implementation of Green Infrastructure (GI) as a stormwater management strategy within the City of Raleigh. Incorporation of GI into future development plans is an appealing option for growing urban centers to minimize their impact upon surrounding aquatic ecosystems. Since Raleigh lies outside the regulatory boundary of the Falls Lake Nutrient Strategy, there is not a significant driver in place to encourage a shift towards GI. This study provided American Rivers with estimates of potential scale of GI retrofit implementation within a highly developed stormwater drainage basin, as well as the benefits those retrofits would provide in terms of nutrient load and peak flow reductions from stormwater flow. This was accomplished through the development of a GIS tool that identifies potential GI retrofit locations within Raleigh stormwater drainage basins, expediting the retrofit field reconnaissance process. The outputs of this tool were then incorporated into PLOAD, a GIS-based pollutant load modeling application for watershed-scale management, which provided estimates of mass loading rates of TN, TP, and TSS. The study area consisted of 11 subcatchments within Pigeon House Branch stormwater drainage basin (3200 acres, ~32% mean impervious coverage). Estimated annual pollutant load reductions resulting from GI implementation were 0.67, 9.92, and 16.82 tons of TP, TN, and TSS, respectively, although the accuracy of these numbers is questionable due to the coarse scale at which PLOAD operates. Ideally, other modeling efforts can be applied within this study’s framework to produce more informed scenarios within other drainage basins throughout the Neuse River Basin.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
Stormwater Management
GIS
Green Infrastructure
Low Impact Development
Best Management Practices
Permalink
https://hdl.handle.net/10161/9672
Citation
Green, Benjamin (2015). Impacts of green infrastructure implementation within the Neuse River Basin. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/9672.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University