Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Nonparametric Modeling of Latent Structures

Thumbnail
View / Download
4.4 Mb
Date
2014
Author
Xing, Zhengming
Advisor
Carin, Lawrence
Repository Usage Stats
271
views
146
downloads
Abstract

Unprecedented amount of data has been collected in diverse fields such as social network, infectious disease and political science in this information explosive era. The high dimensional, complex and heterogeneous data imposes tremendous challenges on traditional statistical models. Bayesian nonparametric methods address these challenges by providing models that can fit the data with growing complexity. In this thesis, we design novel Bayesian nonparametric models on dataset from three different fields, hyperspectral images analysis, infectious disease and voting behaviors.

First, we consider analysis of noisy and incomplete hyperspectral imagery, with the objective of removing the noise and inferring the missing data. The noise statistics may be wavelength-dependent, and the fraction of data missing (at random) may be substantial, including potentially entire bands, offering the potential to significantly reduce the quantity of data that need be measured. We achieve this objective by employing Bayesian dictionary learning model, considering two distinct means of imposing sparse dictionary usage and drawing the dictionary elements from a Gaussian process prior, imposing structure on the wavelength dependence of the dictionary elements.

Second, a Bayesian statistical model is developed for analysis of the time-evolving properties of infectious disease, with a particular focus on viruses. The model employs a latent semi-Markovian state process, and the state-transition statistics are driven by three terms: ($i$) a general time-evolving trend of the overall population, ($ii$) a semi-periodic term that accounts for effects caused by the days of the week, and ($iii$) a regression term that relates the probability of infection to covariates (here, specifically, to the Google Flu Trends data).

Third, extensive information on 3 million randomly sampled United States citizens is used to construct a statistical model of constituent preferences for each U.S. congressional district. This model is linked to the legislative voting record of the legislator from each district, yielding an integrated model for constituency data, legislative roll-call votes, and the text of the legislation. The model is used to examine the extent to which legislators' voting records are aligned with constituent preferences, and the implications of that alignment (or lack thereof) on subsequent election outcomes. The analysis is based on a Bayesian nonparametric formalism, with fast inference via a stochastic variational Bayesian analysis.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Electrical engineering
Computer engineering
Statistics
Bayesian nonparametrics
Hyperspectral image
Infectious disease
semi-Markov
voting behavior
Permalink
https://hdl.handle.net/10161/9792
Citation
Xing, Zhengming (2014). Bayesian Nonparametric Modeling of Latent Structures. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9792.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University