Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatio-temporal dynamics of woody plant-cover in Argentine savannas: encroachment, agriculture conversion and changes in carbon stocks at varying scales

Thumbnail
View / Download
2.6 Mb
Date
2015
Author
Gonzalez-Roglich, Mariano
Advisor
Swenson, Jennifer J
Repository Usage Stats
251
views
356
downloads
Abstract

Land use and land cover changes significantly affect C storage in terrestrial ecosystems. Programs intended to compensate land owners for the maintenance or enhancement to C stocks are promising, but require detailed and spatially explicit C distribution estimates to monitor the effectiveness of management interventions. Savanna ecosystems are significant components of the global C cycle, however, they have not received much attention for the development of C monitoring approaches. In this dissertation I have investigated three of the aspects related to woody plant cover dynamics in semiarid savannas of central Argentina: spatio-temporal dynamics, precise field surveying and scaling from field to region with the use of freely available remotely sense data.

To examine the long term changes in woody plant cover, I first carefully extracted information from historical maps of the Caldenal savannas of central Argentina (190,000 km2) in the 1880s to generate a woody cover map that was compared to a 2000s dataset. Over the last ~120 years, woody cover increased across ~12,200 km2 (14.2 % of the area). During the same period, ~5,000 km2 of the original woody area was converted to croplands and ~7,000 km2 to pastures, about the same total land area as was affected by woody plant encroachment. A smaller area, fine scale analysis between the 1960s and the 2000s revealed that tree cover increased overall by 27%, shifting from open savannas to a mosaic of dense woodlands along with additional agricultural clearings. Statistical models indicate that woody cover dynamics in this region were affected by a combination of environmental and human factors.

To assess the consequences of woody cover dynamics on C, we also measured ecosystem C stocks along a gradient of woody plant density. I characterized changes in C stocks in live biomass (woody and herbaceous, above- and belowground), litter, and soil organic carbon (to 1.5 m depth) pools along a woody plant cover gradient (0 to 94 %). I found a significant increase in ecosystem C stocks with increasing woody cover, with mean values of 4.5, 8.4, 12.4, and 16.5 kg C m-2 for grasslands, shrublands, open and closed forests, respectively. Woody plant cover and soil silt content were the two primary factors accounting for the variability of ecosystem C. I developed simple regression models that reliably predict soil, tree and ecosystem C stocks from basic field measurements of woody plant cover and soil silt content. These models are valuable tools for broad scale estimation if linked to regional soil maps and remotely sensed data, allowing for precise and spatially explicit estimation of C stocks and change at regional scales.

Finally, I used the field survey data and high resolution panchromatic images (2.5 m resolution) to identify tree canopies and train a regional tree percent cover model using the Random Forests (RF) algorithm. I found that a model with summer and winter tasseled cap spectral indices, climate and topography performed best. Sample spatial distribution highly affected the performance of the RF models. The regression model built to predict tree C stocks from percent tree cover explained 83 % of the variability, and the spatially explicit tree C model prediction presented an root mean squared error (RMSE) of 8.2 tC/ha which represented ~30% of the mean C stock for areas with tree cover. Our analysis indicates that regionally over the last ~120 years, increases in woody plant cover have stored significant amounts of C (95.9 TgC), but not enough to compensate for in C generated by the conversions of woodlands and natural grasslands to croplands and pastures (166.7 TgC), generating a regional net loss of 70.9 TgC. C losses could be even larger in the future if, as predicted, energy crops would trigger a new land cover change phase in this region.

Type
Dissertation
Department
Environment
Subject
Environmental science
Remote sensing
Ecology
caldenal
carbon mapping
land cover change
landscape dynamics
prosopis caldenia
remote sensing
Permalink
https://hdl.handle.net/10161/9854
Citation
Gonzalez-Roglich, Mariano (2015). Spatio-temporal dynamics of woody plant-cover in Argentine savannas: encroachment, agriculture conversion and changes in carbon stocks at varying scales. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9854.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University