How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures.

Abstract

The ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis).

Department

Description

Provenance

Subjects

Citation


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.