Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation.
Date
2017-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Mutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Veltri, T, M Landim-Vieira, MS Parvatiyar, D Gonzalez-Martinez, KM Dieseldorff Jones, CA Michell, D Dweck, AP Landstrom, et al. (2017). Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation. Frontiers in Physiology, 8(APR). p. 221. 10.3389/fphys.2017.00221 Retrieved from https://hdl.handle.net/10161/20306.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Andrew Paul Landstrom
Dr. Landstrom is a physician scientist who specializes in the care of children and young adults with arrhythmias, heritable cardiovascular diseases, and sudden unexplained death syndromes. As a clinician, he is trained in pediatric cardiology with a focus on arrhythmias and genetic diseases of the heart. He specializes in caring for patients with heritable arrhythmia (channelopathies) such as long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. He also specializes in the evaluation of children following a cardiac arrest or after the sudden and unexplained death of a family member. He has expertise in cardiovascular genetics and uses it to identify individuals in a family who may be at risk of a disease, even if all clinical testing is negative. As a scientist, he is trained in genetics and cell biology. He runs a research lab exploring the genetic and molecular causes of arrhythmias, sudden unexplained death syndromes, and heart muscle disease (cardiomyopathies). He utilizes patient-derived induced pluripotent stem cells and genetic mouse models to identify the mechanisms of cardiovascular genetic disease with the goal of developing novel therapies.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.