Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain.

Abstract

Chemotherapy-induced peripheral neuropathic pain (CIPNP) is a severe dose- and therapy-limiting side effect of widely used cytostatics that is particularly difficult to treat. Here, we report increased expression of the cytochrome-P450-epoxygenase CYP2J6 and increased concentrations of its linoleic acid metabolite 9,10-EpOME (9,10-epoxy-12Z-octadecenoic acid) in dorsal root ganglia (DRGs) of paclitaxel-treated mice as a model of CIPNP. The lipid sensitizes TRPV1 ion channels in primary sensory neurons and causes increased frequency of spontaneous excitatory postsynaptic currents in spinal cord nociceptive neurons, increased CGRP release from sciatic nerves and DRGs, and a reduction in mechanical and thermal pain hypersensitivity. In a drug repurposing screen targeting CYP2J2, the human ortholog of murine CYP2J6, we identified telmisartan, a widely used angiotensin II receptor antagonist, as a potent inhibitor. In a translational approach, administration of telmisartan reduces EpOME concentrations in DRGs and in plasma and reverses mechanical hypersensitivity in paclitaxel-treated mice. We therefore suggest inhibition of CYP2J isoforms with telmisartan as a treatment option for paclitaxel-induced neuropathic pain.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1073/pnas.1613246113

Publication Info

Sisignano, Marco, Carlo Angioni, Chul-Kyu Park, Sascha Meyer Dos Santos, Holger Jordan, Maria Kuzikov, Di Liu, Sebastian Zinn, et al. (2016). Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proc Natl Acad Sci U S A, 113(44). pp. 12544–12549. 10.1073/pnas.1613246113 Retrieved from https://hdl.handle.net/10161/13681.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Ji

Ru-Rong Ji

Distinguished Professor of Anesthesiology, in the School of Medicine

I have been doing neuroscience and pain research for over 25 years in multiple academic institutes, including Duke University (2012-current), Harvard Medical School (1998-2012), Johns Hopkins Medical School, Karolinska Institute, and Peking University. The long-term goal of my lab is to identify molecular and cellular mechanisms that underlie the induction and resolution of pathological pain and develop novel pain therapeutics that can target these mechanisms, with specific focus on neuroimmune interactions. We are interested in the following scientific questions. (1) How does inflammation induce and resolve pain via immune cell interaction with primary sensory neurons? (2) How does neuroinflammation drive chronic pain via activation of glial cells in the CNS (microglia and astrocytes) and PNS (satellite glial cells) and regulation of sensory neuron plasticity (peripheral sensitization) and spinal cord synaptic plasticity (central sensitization)? (3) How do specialized pro-resolution mediators (SPMs, e.g., resolvins, protectins, and maresins) control pain via GPCR signaling? (4) How do immunotherapies through the PD-L1/PD-1 and STING/IFN pathways regulate pain, cognition, and neuronal activities? (5) How do secreted miRNAs regulate pain and itch via direct activation of surface receptors and ion channels? (6) How do nerve terminals interact with cancers in chronic pain and itch? (7) How do Toll-like receptors (TLR) in primary sensory neurons sense danger signals and regulate pain and itch? (8) How do regenerative approaches such as autologous conditioned serum (ACS) and bone marrow stromal cells (MSCs) produce long-term pain relief via secreting anti-inflammatory factors and exosomes? We employ a multidisciplinary approach that covers in vitro, ex vivo, and in vivo studies for animal behaviors, electrophysiology, molecular biology, cell biology, and transgenic animals. We have identified numerous therapeutic targets and filed many patents for translational studies. As the Director of the Center for Translational Pain Medicine (CTPM) and a highly cited researcher (Cross Field, Clarivate), I have both administrative and scientific leadership for successful completion of many research projects. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.