On explicit $L^2$-convergence rate estimate for piecewise deterministic Markov processes

dc.contributor.author

Lu, Jianfeng

dc.contributor.author

Wang, Lihan

dc.date.accessioned

2020-12-22T02:55:56Z

dc.date.available

2020-12-22T02:55:56Z

dc.date.updated

2020-12-22T02:55:54Z

dc.description.abstract

We establish $L^2$-exponential convergence rate for three popular piecewise deterministic Markov processes for sampling: the randomized Hamiltonian Monte Carlo method, the zigzag process, and the bouncy particle sampler. Our analysis is based on a variational framework for hypocoercivity, which combines a Poincar'{e}-type inequality in time-augmented state space and a standard $L^2$ energy estimate. Our analysis provides explicit convergence rate estimates, which are more quantitative than existing results.

dc.identifier.uri

https://hdl.handle.net/10161/21932

dc.subject

math.PR

dc.subject

math.PR

dc.subject

math.AP

dc.subject

stat.CO

dc.title

On explicit $L^2$-convergence rate estimate for piecewise deterministic Markov processes

dc.type

Journal article

duke.contributor.orcid

Lu, Jianfeng|0000-0001-6255-5165

duke.contributor.orcid

Wang, Lihan|0000-0002-9130-0505

pubs.organisational-group

Student

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Chemistry

pubs.organisational-group

Physics

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2007.14927v1.pdf
Size:
297.31 KB
Format:
Adobe Portable Document Format