Genetic assimilation, robustness and plasticity are key processes in the development and evolution of novel traits.

Loading...

Date

2025-04

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

3
views
2
downloads

Citation Stats

Attention Stats

Abstract

This is a commentary on how C.H. Waddington's experiments in the 1950's, first published in 1953 in a provocatively titled paper "Genetic assimilation of an acquired character," laid the foundation for the field of phenotypic plasticity, and how the ideas he developed eventually led to new ways of understanding phenotypic robustness, plasticity, and how novel traits develop and evolve. The "acquired characters" that Waddington worked with were based on Goldschmidt's ideas of "phenocopies": new phenotypes that develop after an environmental stress that resemble the phenotypes of known mutations. The idea behind genetic assimilation, first outlined by Waddington in 1942, is that existing developmental pathways can be rearranged and redirected through selection to stabilize the phenocopy phenotype, without requiring new mutations. In the short term, Waddington's work led to the discovery of heat shock proteins and the role of Hsp90 in masking defective proteins and allowing the accumulation of cryptic genetic variation. Subsequent studies revealed a host of stabilizing systems that operate at all levels of biological organization that make phenotypes robust to genetic and environmental variation. Many of these resemble homeostatic mechanisms that don't require a stress shock but operate under normal physiological conditions and allow for the accumulation of large amounts of cryptic genetic variation. This cryptic genetic variation can be revealed by mutations or environmental factors that destabilize a homeostatic mechanism. Selection can then act on the phenotypic variants that are produced. This scenario corresponds to the modern phenotype-first hypothesis for the evolution of novel traits that was foreseen by Waddington as early as 1942.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1016/j.ydbio.2025.04.011

Publication Info

Nijhout, H Frederik (2025). Genetic assimilation, robustness and plasticity are key processes in the development and evolution of novel traits. Developmental biology. p. S0012-1606(25)00106-X. 10.1016/j.ydbio.2025.04.011 Retrieved from https://hdl.handle.net/10161/32355.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Nijhout

H. Frederik Nijhout

John Franklin Crowell Distinguished Professor of Biology

Fred Nijhout is broadly interested in developmental physiology and in the interactions between development and evolution. He has several lines of research ongoing in his laboratory that on the surface may look independent from one another, but all share a conceptual interest in understanding how complex traits arise through, and are affected by, the interaction of genetic and environmental factors. 1) The control of polyphenic development in insects. This work attempts to understand how the insect developmental hormones, ecdysone and juvenile hormone, act to control alternative developmental pathways within a single individual. His studies and those of his students have dealt with the control of sequential polyphenism in metamorphosis, of alternate polyphenisms in caste determination of social insects and the many seasonal forms of insects. 2) The regulation of organ and body size in insects. Ongoing research deals with the mechanism by which insects asses their body size and stop growing when they have achieved a characteristic size. Other studies deal with the control of growth and size of imaginal disks. This work is revealing that the control of body and organ size does not reside in any specific cellular or molecular mechanism but that it is a systems property in which cellular, physiological and environmental signals all contribute in inextricable ways to produce the final phenotype. 3) The development and evolution of color patterns in Lepidoptera. Ongoing research attempts to elucidate the evolution of mimicry using genetic and genomic approaches. 4) The development, genetics and evolution of complex traits. Complex traits are those whose variation is affected by many genes and environmental factors and whose inheritance does not follow Mendel’s laws. In practice this involves understanding how genetic and developmental networks operate when there is allelic variation in their genes. This work attempts to reconstruct complex traits through mathematical models of the genetic and developmental processes by which they originate, and uses these models to study the effects of mutation and selection. Currently metabolic networks are being used to develop a deeper understanding of the functional relationships between genetic variation and trait variation, and of the mechanisms by which genetic and environmental variables interact to produce phenotypes. More on web page: http://www.biology.duke.edu/nijhout/


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.