Cognitive and Behavioral Impairments Evoked by Low-Level Exposure to Tobacco Smoke Components: Comparison with Nicotine Alone.

Loading...
Thumbnail Image

Date

2016-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

0
views
16
downloads

Citation Stats

Abstract

Active maternal smoking has adverse effects on neurobehavioral development of the offspring, with nicotine (Nic) providing much of the underlying causative mechanism. To determine whether the lower exposures caused by second-hand smoke are deleterious, we administered tobacco smoke extract (TSE) to pregnant rats starting preconception and continued through the second postnatal week, corresponding to all 3 trimesters of fetal brain development. Dosing was adjusted to produce maternal plasma Nic concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers. We then compared TSE effects to those of an equivalent dose of Nic alone, and to a 10-fold higher Nic dose. Gestational exposure to TSE and Nic significantly disrupted cognitive and behavioral function in behavioral tests given during adolescence and adulthood (postnatal weeks 4-40), producing hyperactivity, working memory deficits, and impairments in emotional processing, even at the low exposure levels corresponding to second-hand smoke. Although TSE effects were highly correlated with those of Nic, the effects of TSE were much larger than could be attributed to just the Nic in the mixture. Indeed, TSE effects more closely resembled those of the 10-fold higher Nic levels, but still exceeded their magnitude. In combination with our earlier findings, this study thus completes the chain of causation to prove that second-hand smoke exposure causes neurodevelopmental deficits, originating in disruption of neurodifferentiation, leading to miswiring of neuronal circuits, and as shown here, culminating in behavioral dysfunction. As low level exposure to Nic alone produced neurobehavioral teratology, 'harm reduction' Nic products do not abolish the potential for neurodevelopmental damage.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/toxsci/kfw042

Publication Info

Hall, Brandon J, Marty Cauley, Dennis A Burke, Abtin Kiany, Theodore A Slotkin and Edward D Levin (2016). Cognitive and Behavioral Impairments Evoked by Low-Level Exposure to Tobacco Smoke Components: Comparison with Nicotine Alone. Toxicological sciences : an official journal of the Society of Toxicology, 151(2). pp. 236–244. 10.1093/toxsci/kfw042 Retrieved from https://hdl.handle.net/10161/29584.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Slotkin

Theodore Alan Slotkin

Professor of Pharmacology and Cancer Biology

We study the interaction of drugs, hormones and environmental factors with the developing organism, with particular emphasis on the fetal and neonatal nervous system. The role of biochemical factors mediating development of nerve cells and other types of tissue is a major thrust, since they influence the subsequent structural and physiological status of critical organ systems. Ongoing projects comprise five areas: (1) Mechanisms regulating development of synapses - role of endocrine and other trophic factors, intracellular messengers in developing cells, control of target organ differentiation by neural input; (2) Adverse effects of exogenous agents on development, with an emphasis on identification of mechanisms by which behavioral or physiological damage occurs - drugs of abuse (especially nicotine), hormonal imbalances, environmental contaminants (especially pesticides), food additives, intrauterine growth retardation, fetal and neonatal hypoxia; (3) Control of fetal and neonatal cardiovascular and respiratory function by the immature nervous system - normal physiological mechanisms, responses to stress, factors mediating the transition from fetal to neonatal function, reactivity during delivery, Sudden Infant Death Syndrome; (4) Breast cancer cell growth regulation - role of hormone and neurotransmitter receptors converging on common cell signaling mechanisms, and targeting of these receptors for cancer therapeutics.

Levin

Edward Daniel Levin

Professor in Psychiatry and Behavioral Sciences

Dr. Levin is Chief of the Neurobehavioral Research Lab in the Psychiatry Department of Duke University Medical Center. His primary academic appointment is as Professor in the Department of Psychiatry and Behavioral Sciences. He also has secondary appointments in the Department Pharmacology and Cancer Biology, the Department of Psychological and Brain Sciences and the Nicholas School of the Environment at Duke. His primary research effort is to understand basic neural interactions underlying cognitive function and addiction and to apply this knowledge to better understand cognitive dysfunction and addiction disorders and to develop novel therapeutic treatments.

The three main research components of his laboratory are focused on the themes of the basic neurobiology of cognition and addiction, neurobehavioral toxicology and the development of novel therapeutic treatments for cognitive dysfunction and substance abuse. Currently, our principal research focus concerns nicotine. We have documented the basic effects of nicotine on learning memory and attention as well as nicotine self-administration. We are continuing with more mechanistic studies in rat models using selective lesions, local infusions and neurotransmitter interaction studies. We have found that nicotine improves memory performance not only in normal rats, but also in rats with lesions of hippocampal and basal forebrain connections. We are concentrating on alpha7 and alpha4beta2 nicotinic receptor subtypes in the hippocampus, amygdala , thalamus and frontal cortex and how they interact with dopamine D1 and D2 and glutamate NMDA systems with regard to memory and addiction. I am also conducting studies on human cognitive behavior. We have current studies to assess nicotine effects on attention, memory and mental processing speed in schizophrenia, Alzheimer's Disease and Attention Deficit Hyperactivity Disorder. In the area of neurobehavioral toxicology, I have continuing projects to characterize the adverse effects of prenatal and adolescent nicotine exposure. Our primary project in neurobehavioral toxicology focuses on the cognitive deficits caused by the marine toxins. The basic and applied aims of our research complement each other nicely. The findings concerning neural mechanisms underlying cognitive function help direct the behavioral toxicology and therapeutic development studies, while the applied studies provide important functional information concerning the importance of the basic mechanisms under investigation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.