α4β2 Nicotinic receptor desensitizing compounds can decrease self-administration of cocaine and methamphetamine in rats.
Date
2019-02
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Sazetidine-A [6-(5(((S)-azetidine-2-yl)methoxy)pyridine-3-yl)hex-5-yn-1-ol] is a selective α4β2 nicotinic receptor desensitizing agent and partial agonist. Sazetidine-A has been shown in our previous studies to significantly reduce nicotine and alcohol self-administration in rats. The question arises whether sazetidine-A would reduce self-administration of other addictive drugs as well. Nicotinic receptors on the dopaminergic neurons in the ventral tegmental area play an important role in controlling the activity of these neurons and release of dopamine in the nucleus accumbens, which is critical mechanism for reinforcing value of drugs of abuse. Previously, we showed that the nonspecific nicotinic antagonist mecamylamine significantly reduces cocaine self-administration in rats. In this study, we acutely administered systemically sazetidine-A and two other selective α4β2 nicotinic receptor-desensitizing agents, VMY-2-95 and YL-2-203, to young adult female Sprague-Dawley rats and determined their effects on IV self-administration of cocaine and methamphetamine. Cocaine self-administration was significantly reduced by 0.3 mg/kg of sazetidine-A. In another set of rats, sazetidine-A (3 mg/kg) significantly reduced methamphetamine self-administration. VMY-2-95 significantly reduced both cocaine and methamphetamine self-administration with threshold effective doses of 3 and 0.3 mg/kg, respectively. In contrast, YL-2-203 did not significantly reduce cocaine self-administration at the same dose range and actually significantly increased cocaine self-administration at the 1 mg/kg dose. YL-2-203 (3 mg/kg) did significantly decrease methamphetamine self-administration. Sazetidine-A and VMY-2-95 are promising candidates to develop as new treatments to help addicts successfully overcome a variety of addictions including tobacco, alcohol as well as the stimulant drugs cocaine and methamphetamine.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Levin, Edward D, Amir H Rezvani, Corinne Wells, Susan Slade, Venkata M Yenugonda, Yong Liu, Milton L Brown, Yingxian Xiao, et al. (2019). α4β2 Nicotinic receptor desensitizing compounds can decrease self-administration of cocaine and methamphetamine in rats. European journal of pharmacology, 845. pp. 1–7. 10.1016/j.ejphar.2018.12.010 Retrieved from https://hdl.handle.net/10161/29516.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Amir H. Rezvani
My research and teaching interests have been primarily focused on the following areas:
Alcoholism: I work with "alcoholic" rats with genetic predisposition!" We use selectively-bred alcohol preferring rats as an animal model of human alcoholism for developing better pharmacological treatments for alcoholism. Recently, we are working on several novel promising "anti-craving" compounds for the treatment of alcoholism. We are also studying the interaction between alcohol drinking and nicotine intake.
Nicotine Addiction: We have been studying age and sex differences in i.v. nicotine self-administration in rats. We have found that pattern of drug intake is both age- and sex-dependent. Our lab is also exploring different neuronal targets for developing better pharmacologic treatment for nicotine addiction.
Sustained Attention: Another aspect of our research is studying the role of the neuronal nicotinic and other neuronal systems in sustained attention using a rodent model. We have shown, nicotine (not smoking!) and nicotinic compounds improve attention in rats. A majority of people with schizophrenia smoke and they smoke heavily. Thus, it is important to understand the interaction of antipsychotic medications and nicotine in sustained attention. This has been another aspect of our research with interesting results. Presently, we are testing novel nicotinic compounds for improving pharmacologically-impaired sustained attention.
Teaching: I love to teach and interact with students. Since arriving at Duke in 1999, I have been team-teaching the popular alcohol course (Psych 206-01R; Alcohol: Brain, Society and Individual). I also enjoy mentoring undergrad students who are interested in science and enjoy working in the lab with cute little creatures!.
Community: I am a member of the Board of Directors of Triangle Residential Options for Substance Abusers (TROSA), a self-supported therapeutic community in Durham. I also give seminars and workshops on addiction around the country.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.