Riesz Energy on the Torus: Regularity of Minimizers

dc.contributor.author

Lu, Jianfeng

dc.contributor.author

Steinerberger, Stefan

dc.date.accessioned

2017-11-30T21:57:22Z

dc.date.available

2017-11-30T21:57:22Z

dc.date.issued

2017-11-30

dc.description.abstract

We study sets of $N$ points on the $d-$dimensional torus $\mathbb{T}^d$ minimizing interaction functionals of the type [ \sum_{i, j =1 \atop i \neq j}^{N}{ f(x_i - x_j)}. ] The main result states that for a class of functions $f$ that behave like Riesz energies $f(x) \sim |x|^{-s}$ for $0< s < d$, the minimizing configuration of points has optimal regularity w.r.t. a Fourier-analytic regularity measure that arises in the study of irregularities of distribution. A particular consequence is that they are optimal quadrature points in the space of trigonometric polynomials up to a certain degree. The proof extends to other settings and also covers less singular functions such as $f(x) = \exp\bigl(- N^{\frac{2}{d}} |x|^2 \bigr)$.

dc.identifier

http://arxiv.org/abs/1710.08010v1

dc.identifier.uri

https://hdl.handle.net/10161/15781

dc.subject

math-ph

dc.subject

math-ph

dc.subject

math.CA

dc.subject

math.MP

dc.title

Riesz Energy on the Torus: Regularity of Minimizers

dc.type

Journal article

duke.contributor.orcid

Lu, Jianfeng|0000-0001-6255-5165

pubs.author-url

http://arxiv.org/abs/1710.08010v1

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Temp group - logins allowed

pubs.organisational-group

Trinity College of Arts & Sciences

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1710.08010v1.pdf
Size:
189.46 KB
Format:
Adobe Portable Document Format