Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group.
Date
2015-05-08
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Xiao, Ying, Stephen F Kry, Richard Popple, Ellen Yorke, Niko Papanikolaou, Sotirios Stathakis, Ping Xia, Saiful Huq, et al. (2015). Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. Journal of applied clinical medical physics, 16(3). p. 5219. 10.1120/jacmp.v16i3.5219 Retrieved from https://hdl.handle.net/10161/19406.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.