Robotics and Virtual Reality for Optical Coherence Tomography-Guided Ophthalmic Surgery and Diagnostics

dc.contributor.advisor

Izatt, Joseph A

dc.contributor.author

Draelos, Mark

dc.date.accessioned

2020-06-10T15:19:02Z

dc.date.available

2021-05-27T08:17:07Z

dc.date.issued

2020

dc.department

Biomedical Engineering

dc.description.abstract

Ophthalmology is the only surgical specialty that routinely employs both microsurgical techniques and live intraoperative imaging, especially optical coherence tomography (OCT). Consequently, ophthalmic surgeons routinely face challenges in visualization and manipulation of small ocular tissues or in interpreting intraoperative imaging to guide their actions. This dissertation therefore seeks to advance the state-of-the-art in ophthalmic surgery with regards to manipulation, visualization, and interpretation.

First, we address the interpretation challenge in ophthalmic surgery where live volumetric imaging from OCT systems recently incorporated into surgical microscopes has freed surgeons from the otherwise universal top-down viewpoint. These new viewpoints, however, disorient surgeons when directions of their hand motions and viewed tool motions do not align. Thus, we introduce a robotic surgery paradigm to decouple surgeons' hands from their tools and ensure that viewed tool motions align in arbitrary viewpoints. We implement this concept in a physical testbed system for performing macroscopic tasks and evaluate this system through a user study with mock surgical procedures.

Next, we consider immersive virtual reality (VR) as a technique for displaying complex images and thereby overcome the visualization challenge of conveying intraoperative OCT to surgeons. Far from "blinded" to the outside world, an VR-immersed surgeon potentially has access to much more information than they could see when obligated to direct their attention through the microscope oculars alone. To provide a compelling visual experience, however, immersive VR systems require complete control over users' visual inputs and thus frequently cause motion sickness with framerates lower than 90 fps per eye. By contrast, modern volumetric OCT visualization techniques typically render at no more than 30 fps. Therefore, we introduce GPU approaches and data organization techniques for high-frame rate ray casting at 180 fps. We conduct performance analyses of these techniques, develop an interactive VR-OCT viewer, and demonstrate guidance of mock surgical procedures exclusively by live OCT and video feedthrough from within immersive VR.

Then, we focus on deep anterior lamellar keratoplasty (DALK), a promising technique for corneal transplantation, that poses such significant manipulation and visualization challenges that 59% of procedures fail. In DALK, surgeons must insert a needle 90% through the 500 μm cornea without penetrating its underlying membrane using a surgical microscope with poor depth perception. We propose a robot-assisted solution to jointly solve the manipulation and visualization challenges using a cooperatively-controlled, precise robot arm and live OCT imaging, respectively. We develop this DALK workstation with a commercial robot arm and a custom OCT scanner, evaluate its effectiveness for cooperative needle insertions in a study with corneal fellows, and assess its ability to perform fully automatic needle insertions.

Finally, we mitigate the visualization challenge surgeons face when obtaining OCT images of incompletely stabilized eyes, as happens frequently during procedures with only conscious sedation.

We introduce a robotically-aligned OCT scanner capable of automatic eye imaging without chinrests using a hybrid macro-mini approach. This same approach also enables an expanded ability to image non-surgical patients when chinrest stabilization is infeasible or when a trained ophthalmic photographer is unavailable. We validate the concept for anterior imaging in model eyes and perform both anterior and retinal fully autonomous imaging in human subjects.

Overall, these contributions have the potential to change ophthalmic and other surgeries with intraoperative 3D imaging in fundamental ways. By breaking down manipulation, visualization, and interpretation challenges, robotics and VR promise procedures that are more efficient for patients and more ergonomic for surgeons.

dc.identifier.uri

https://hdl.handle.net/10161/21031

dc.subject

Biomedical engineering

dc.subject

Medical imaging

dc.subject

Ophthalmology

dc.subject

motion correction

dc.subject

Ophthalmology

dc.subject

Optical coherence tomography

dc.subject

Robotics

dc.title

Robotics and Virtual Reality for Optical Coherence Tomography-Guided Ophthalmic Surgery and Diagnostics

dc.type

Dissertation

duke.embargo.months

11.506849315068493

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Draelos_duke_0066D_15309.pdf
Size:
59.36 MB
Format:
Adobe Portable Document Format

Collections