The Dark Energy Survey Supernova Program: Modelling selection efficiency and observed core collapse supernova contamination

dc.contributor.author

Vincenzi, M

dc.contributor.author

Sullivan, M

dc.contributor.author

Graur, O

dc.contributor.author

Brout, D

dc.contributor.author

Davis, TM

dc.contributor.author

Frohmaier, C

dc.contributor.author

Galbany, L

dc.contributor.author

Gutiérrez, CP

dc.contributor.author

Hinton, SR

dc.contributor.author

Hounsell, R

dc.contributor.author

Kelsey, L

dc.contributor.author

Kessler, R

dc.contributor.author

Kovacs, E

dc.contributor.author

Kuhlmann, S

dc.contributor.author

Lasker, J

dc.contributor.author

Lidman, C

dc.contributor.author

Möller, A

dc.contributor.author

Nichol, RC

dc.contributor.author

Sako, M

dc.contributor.author

Scolnic, D

dc.contributor.author

Smith, M

dc.contributor.author

Swann, E

dc.contributor.author

Wiseman, P

dc.contributor.author

Asorey, J

dc.contributor.author

Lewis, GF

dc.contributor.author

Sharp, R

dc.contributor.author

Tucker, BE

dc.contributor.author

Aguena, M

dc.contributor.author

Allam, S

dc.contributor.author

Avila, S

dc.contributor.author

Bertin, E

dc.contributor.author

Brooks, D

dc.contributor.author

Burke, DL

dc.contributor.author

Rosell, AC

dc.contributor.author

Kind, MC

dc.contributor.author

Carretero, J

dc.contributor.author

Castander, FJ

dc.contributor.author

Choi, A

dc.contributor.author

Costanzi, M

dc.contributor.author

Da Costa, LN

dc.contributor.author

Pereira, MES

dc.contributor.author

De Vicente, J

dc.contributor.author

Desai, S

dc.contributor.author

Diehl, HT

dc.contributor.author

Doel, P

dc.contributor.author

Everett, S

dc.contributor.author

Ferrero, I

dc.contributor.author

Fosalba, P

dc.contributor.author

Frieman, J

dc.contributor.author

Garciá-Bellido, J

dc.contributor.author

Gaztanaga, E

dc.contributor.author

Gerdes, DW

dc.contributor.author

Gruen, D

dc.contributor.author

Gruendl, RA

dc.contributor.author

Gutierrez, G

dc.contributor.author

Hollowood, DL

dc.contributor.author

Honscheid, K

dc.contributor.author

Hoyle, B

dc.contributor.author

James, DJ

dc.contributor.author

Kuehn, K

dc.contributor.author

Kuropatkin, N

dc.contributor.author

Maia, MAG

dc.contributor.author

Martini, P

dc.contributor.author

Menanteau, F

dc.contributor.author

Miquel, R

dc.contributor.author

Morgan, R

dc.contributor.author

Palmese, A

dc.contributor.author

Paz-Chinchón, F

dc.contributor.author

Plazas, AA

dc.contributor.author

Romer, AK

dc.contributor.author

Sanchez, E

dc.contributor.author

Scarpine, V

dc.contributor.author

Serrano, S

dc.contributor.author

Sevilla-Noarbe, I

dc.contributor.author

Soares-Santos, M

dc.contributor.author

Suchyta, E

dc.contributor.author

Tarle, G

dc.contributor.author

Thomas, D

dc.contributor.author

To, C

dc.contributor.author

Varga, TN

dc.contributor.author

Walker, AR

dc.contributor.author

Wilkinson, RD

dc.date.accessioned

2021-01-01T17:05:37Z

dc.date.available

2021-01-01T17:05:37Z

dc.date.updated

2021-01-01T17:05:37Z

dc.description.abstract

The analysis of current and future cosmological surveys of type Ia supernovae (SNe Ia) at high-redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-year photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 5.8 to 9.3 per cent, with an average of 7.0 per cent and r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty.

dc.identifier.uri

https://hdl.handle.net/10161/21954

dc.publisher

Oxford University Press (OUP)

dc.subject

astro-ph.CO

dc.subject

astro-ph.CO

dc.title

The Dark Energy Survey Supernova Program: Modelling selection efficiency and observed core collapse supernova contamination

dc.type

Journal article

duke.contributor.orcid

Scolnic, D|0000-0002-4934-5849

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Physics

pubs.organisational-group

Duke

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2012.07180v1.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format