Rapamycin Interferes With Postdepletion Regulatory T Cell Homeostasis and Enhances DSA Formation Corrected by CTLA4-Ig.
Date
2016-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
Previously, we demonstrated that alemtuzumab induction with rapamycin as sole maintenance therapy is associated with an increased incidence of humoral rejection in human kidney transplant patients. To investigate the role of rapamycin in posttransplant humoral responses after T cell depletion, fully MHC mismatched hearts were transplanted into hCD52Tg mice, followed by alemtuzumab treatment with or without a short course of rapamycin. While untreated hCD52Tg recipients acutely rejected B6 hearts (n = 12), hCD52Tg recipients treated with alemtuzumab alone or in conjunction with rapamycin showed a lack of acute rejection (MST > 100). However, additional rapamycin showed a reduced beating quality over time and increased incidence of vasculopathy. Furthermore, rapamycin supplementation showed an increased serum donor-specific antibodies (DSA) level compared to alemtuzumab alone at postoperation days 50 and 100. Surprisingly, additional rapamycin treatment significantly reduced CD4(+) CD25(+) FoxP3(+) T reg cell numbers during treatment. On the contrary, ICOS(+) PD-1(+) CD4 follicular helper T cells in the lymph nodes were significantly increased. Interestingly, CTLA4-Ig supplementation in conjunction with rapamycin corrected rapamycin-induced accelerated posttransplant humoral response by directly modulating Tfh cells but not Treg cells. This suggests that rapamycin after T cell depletion could affect Treg cells leading to an increase of Tfh cells and DSA production that can be reversed by CTLA4-Ig.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Oh, B, J Yoon, A Farris, A Kirk, S Knechtle and J Kwun (2016). Rapamycin Interferes With Postdepletion Regulatory T Cell Homeostasis and Enhances DSA Formation Corrected by CTLA4-Ig. Am J Transplant, 16(9). pp. 2612–2623. 10.1111/ajt.13789 Retrieved from https://hdl.handle.net/10161/11778.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Allan Douglas Kirk
I am a surgeon with interest in immune management of transplant recipients. I am particularly interested in therapies that influence T cell costimulation pathways and adjuvant therapies that facilitate costimulation blockade to prevent the rejection of transplanted organs without undue suppression of protective immunity. I am also interested in understanding how injury, such as that occurring during trauma or in elective surgery, influences immune responses and subsequent healing following injury.
Stuart Johnston Knechtle
During my career as an academic surgeon, I have had the privilege of leading and/or participating in a diverse portfolio of hypothesis-driven research projects. These projects have centered on the immunology of surgery and transplantation, including both cellular and antibody-mediated immune responses. During my training I studied the response of hyper-sensitized recipients to allogeneic liver transplantation, and am currently studying means of reducing immunologic memory that might allow more successful transplantation in sensitized recipients. This immune response involves pathways of coagulation, antibody-mediated rejection, and cellular rejection and current work in my lab involves these three pathways. The other major focuses of my work have been co-stimulation blockade and immune cell depletion as approaches to immunologic unresponsiveness or tolerance. My research group has been involved in translational and clinical research to develop these mechanistic tools for the benefit of human organ transplant recipients.
Recent Publications
Knechtle SJ, Shaw JM, Hering BJ, Kraemer K, Madsen JC. Translational impact of NIH-funded nonhuman primate research in transplantation. Sci Transl Med. 2019 Jul 10;11(500). pii: eaau0143. Reprint | Full Text
Jean Kwun
Dr. Kwun is currently the Director of Transplant Basic Science Research at the Duke Transplant Center.
Research interests include humoral tolerance to organ transplants in animal model and humans, developing a clinically relevant animal model to study the mechanisms of antibody-mediated rejection (AMR), and establishing a conceptual basis that will translate into therapeutic intervention of AMR.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.