Asymptotic behavior of branching diffusion processes in periodic media

Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



We study the asymptotic behavior of branching diffusion processes in periodic media. For a super-critical branching process, we distinguish two types of behavior for the normalized number of particles in a bounded domain, depending on the distance of the domain from the region where the bulk of the particles is located. At distances that grow linearly in time, we observe intermittency (i.e., the $k$-th moment dominates the $k$-th power of the first moment for some $k$), while, at distances that grow sub-linearly in time, we show that all the moments converge. A key ingredient in our analysis is a sharp estimate of the transition kernel for the branching process, valid up to linear in time distances from the location of the initial particle.







James H. Nolen

Professor of Mathematics

My research is in the area of probability and partial differential equations, which have been used to model many phenomena in the natural sciences and engineering.  Asymptotic analysis has been a common theme in much of my research.  Current research interests include: stochastic dynamics, interacting particle systems, reaction-diffusion equations, applications to biological models.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.