Asymptotic behavior of branching diffusion processes in periodic media

dc.contributor.author

Hebbar, P

dc.contributor.author

Koralov, L

dc.contributor.author

Nolen, J

dc.date.accessioned

2020-03-15T19:47:53Z

dc.date.available

2020-03-15T19:47:53Z

dc.date.updated

2020-03-15T19:47:53Z

dc.description.abstract

We study the asymptotic behavior of branching diffusion processes in periodic media. For a super-critical branching process, we distinguish two types of behavior for the normalized number of particles in a bounded domain, depending on the distance of the domain from the region where the bulk of the particles is located. At distances that grow linearly in time, we observe intermittency (i.e., the $k$-th moment dominates the $k$-th power of the first moment for some $k$), while, at distances that grow sub-linearly in time, we show that all the moments converge. A key ingredient in our analysis is a sharp estimate of the transition kernel for the branching process, valid up to linear in time distances from the location of the initial particle.

dc.identifier.uri

https://hdl.handle.net/10161/20254

dc.publisher

Institute of Mathematical Statistics

dc.subject

math.PR

dc.subject

math.PR

dc.subject

math.AP

dc.subject

60J80, 60J60, 35K10

dc.title

Asymptotic behavior of branching diffusion processes in periodic media

dc.type

Journal article

duke.contributor.orcid

Hebbar, P|0000-0002-4938-7264

duke.contributor.orcid

Nolen, J|0000-0003-4630-2293

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2003.01884v1.pdf
Size:
469.24 KB
Format:
Adobe Portable Document Format