Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging.
Date
2020-01-21
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
PURPOSE:To evaluate the complex fiber orientations and 3D collagen fiber network of knee joint connective tissues, including ligaments, muscle, articular cartilage, and meniscus using high spatial and angular resolution diffusion imaging. METHODS:Two rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 μm at 9.4T. The b values varied from 250 to 1250 s/mm2 with 31 diffusion encoding directions for 1 rat knee. The b value was fixed to 1000 s/mm2 with 147 diffusion encoding directions for the second knee. Both the diffusion tensor imaging (DTI) model and generalized Q-sampling imaging (GQI) method were used to investigate the fiber orientation distributions and tractography with the validation of polarized light microscopy. RESULTS:To better resolve the crossing fibers, the b value should be great than or equal to 1000 s/mm2 . The tractography results were comparable between the DTI model and GQI method in ligament and muscle. However, the tractography exhibited apparent difference between DTI and GQI in connective tissues with more complex collagen fibers network, such as cartilage and meniscus. In articular cartilage, there were numerous crossing fibers found in superficial zone and transitional zone. Tractography generated with GQI also resulted in more intact tracts in articular cartilage than DTI. CONCLUSION:High-resolution diffusion imaging with GQI method can trace the complex collagen fiber orientations and architectures of the knee joint at microscopic resolution.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Wang, Nian, Anthony J Mirando, Gary Cofer, Yi Qi, Matthew J Hilton and G Allan Johnson (2020). Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging. Magnetic resonance in medicine. 10.1002/mrm.28181 Retrieved from https://hdl.handle.net/10161/19899.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.