Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization.
dc.contributor.author | Sullivan, William J | |
dc.contributor.author | Mullen, Peter J | |
dc.contributor.author | Schmid, Ernst W | |
dc.contributor.author | Flores, Aimee | |
dc.contributor.author | Momcilovic, Milica | |
dc.contributor.author | Sharpley, Mark S | |
dc.contributor.author | Jelinek, David | |
dc.contributor.author | Whiteley, Andrew E | |
dc.contributor.author | Maxwell, Matthew B | |
dc.contributor.author | Wilde, Blake R | |
dc.contributor.author | Banerjee, Utpal | |
dc.contributor.author | Coller, Hilary A | |
dc.contributor.author | Shackelford, David B | |
dc.contributor.author | Braas, Daniel | |
dc.contributor.author | Ayer, Donald E | |
dc.contributor.author | de Aguiar Vallim, Thomas Q | |
dc.contributor.author | Lowry, William E | |
dc.contributor.author | Christofk, Heather R | |
dc.date.accessioned | 2021-07-09T20:50:59Z | |
dc.date.available | 2021-07-09T20:50:59Z | |
dc.date.issued | 2018-09-06 | |
dc.date.updated | 2021-07-09T20:50:50Z | |
dc.description.abstract | The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis. | |
dc.identifier | S0092-8674(18)31033-X | |
dc.identifier.issn | 0092-8674 | |
dc.identifier.issn | 1097-4172 | |
dc.identifier.uri | ||
dc.language | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartof | Cell | |
dc.relation.isversionof | 10.1016/j.cell.2018.08.017 | |
dc.subject | Cell Line, Tumor | |
dc.subject | Extracellular Matrix | |
dc.subject | Humans | |
dc.subject | Hyaluronoglucosaminidase | |
dc.subject | Glucose | |
dc.subject | Hyaluronic Acid | |
dc.subject | Intercellular Signaling Peptides and Proteins | |
dc.subject | Carrier Proteins | |
dc.subject | Signal Transduction | |
dc.subject | Glycolysis | |
dc.subject | Carbohydrate Metabolism | |
dc.subject | Glucose Transporter Type 1 | |
dc.subject | Tristetraprolin | |
dc.title | Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. | |
dc.type | Journal article | |
duke.contributor.orcid | Whiteley, Andrew E|0000-0002-0165-8395 | |
pubs.begin-page | 117 | |
pubs.end-page | 132.e21 | |
pubs.issue | 1 | |
pubs.organisational-group | Student | |
pubs.organisational-group | Pharmacology & Cancer Biology | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Basic Science Departments | |
pubs.organisational-group | School of Medicine | |
pubs.publication-status | Published | |
pubs.volume | 175 |
Files
Original bundle
- Name:
- PIIS009286741831033X.pdf
- Size:
- 11.72 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version