Assessing the Diurnal Cycle of Surface Energy and Water Fluxes in an Irrigated Agricultural field using an Hydrological Model
Date
2007-05
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
The diurnal variation of water and energy fluxes at the land surface is important to understand the diurnal cycle of photosynthesis, moisture and temperature at surface and deeper soil layers, especially during the growing season. The objective of the paper is to characterize the diurnal cycle of surface water and energy fluxes during the growing season of a corn in an irrigated agricultural field. The paper aims to study the response of the landsurface to observed atmospheric forcing at Citra, Florida, using a 1D column implementation of an existing land surface hydrology model. The observational data are analyzed first, including a careful analysis of physical consistency and measurement error. Particular emphasis is placed on the steps taken to evaluate and improve the quality of the two key physical forcing for the model: observed precipitation and radiation forcing. Simulations of energy fluxes, soil moisture and soil temperature from the model are compared against observations at fifteen minute time scales. The model is able to reproduce diurnal variability of the soil moisture and temperature in response to applied forcing. Root mean square error for soil moisture is calculated to be 0.033 m^3/m^3, 0.04 m^3/m^3, and 0.005 m^3/m^3 for superficial, middle and deeper layers respectively. A sensitivity study is conducted to investigate model behavior by changing thermal diffusivity and hydraulic diffusivity (not specified in the observation data), while keeping all other boundary conditions and physical forcing constant in the model. As opposed to previous applications with the model (at larger field scales and not for agricultural fields), it was found that thermal diffusivity and hydraulic diffusivity have a strong impact on the partitioning of the surface energy fluxes, especially in the case of thermal diffusivity with regard to diurnal variation of deep soil temperature.
Type
Description
Provenance
Citation
Permalink
Citation
Manandhar, Rojina (2007). Assessing the Diurnal Cycle of Surface Energy and Water Fluxes in an Irrigated Agricultural field using an Hydrological Model. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/335.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.