From vortices to instantons on the Euclidean Schwarzschild manifold

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



The first irreducible solution of the $\SU (2)$ self-duality equations on the Euclidean Schwarzschild (ES) manifold was found by Charap and Duff in 1977, only 2 years later than the famous BPST instantons on $\rl^4$ were discovered. While soon after, in 1978, the ADHM construction gave a complete description of the moduli spaces of instantons on $\rl^4$, the case of the Euclidean Schwarzschild manifold has resisted many efforts for the past 40 years. By exploring a correspondence between the planar Abelian vortices and spherically symmetric instantons on ES, we obtain: a complete description of a connected component of the moduli space of unit energy $\SU (2)$ instantons; new examples of instantons with non-integer energy (and non-trivial holonomy at infinity); a complete classification of finite energy, spherically symmetric, $\SU (2)$ instantons. As opposed to the previously known solutions, the generic instanton coming from our construction is not invariant under the full isometry group, in particular not static. Hence disproving a conjecture of Tekin.





Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.