Cyclosporine A inhibits Ca2+-dependent stimulation of the Na+/H+ antiport in human T cells.
Abstract
The cyclic undecapeptide cyclosporine A (CsA) is a potent immunosuppressive agent that inhibits the initial activation of T lymphocytes. This agent appears to be most effective in blocking the action of mitogens such as concanavalin A and the calcium ionophore A23187, which cause an influx of Ca2+, but not those that may act by alternate mechanisms. These observations suggest that CsA may block a Ca2+-dependent step in T cell activation. We have shown that stimulation of the T3-T cell receptor complex-associated Ca2+ transporter activates the Na+/H+ antiport (Rosoff, P. M., and L. C. Cantley, 1985, J. Biol. Chem., 260: 14053-14059). The tumor-promoting phorbol esters, which are co-mitogenic for T cells, activate the exchanger by a separate pathway which is mediated by protein kinase C. Both the rise in intracellular Ca2+ and intracellular pH may be necessary for the successful triggering of cellular activation. In this report we show that CsA blocks the T3-T cell receptor-stimulated, Ca2+ influx-dependent activation of Na+/H+ exchange, but not the phorbol ester-mediated pathway in a transformed human T cell line. CsA inhibited mitogen-stimulation of interleukin-2 production in a separate cell line. CsA also inhibited vasopressin stimulation of the antiporter in normal rat kidney fibroblasts, but had no effect on serum or 12-O-tetradecanoyl phorbol 13-acetate stimulation. CsA did not affect serum or vasopressin or serum stimulation of normal rat kidney cell proliferation. CsA also had no effect on lipopolysaccharide or phorbol ester stimulation of Na+/H+ exchange activity or induction of differentiation in 70Z/3 pre-B lymphocytes in which these events are initiated by the protein kinase C pathway. These data suggest that mechanisms of activation of Na+/H+ exchange that involve an elevation in cytosolic Ca2+ are blocked by CsA but that C kinase-mediated regulation is unaffected. The importance of the Na+/H+ antiport in the regulation of growth and differentiation of T cells is discussed.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Scholars@Duke
Philip Martin Rosoff
My main interests are clinical ethics with a concentration on the equitable allocation of scarce resources (rationing). In this area, I have done work on planning for pandemic influenza and allocation of drugs during shortages. Before retirement I played a major role in the Clinical Ethics Service at Duke Hospital and chair the hospital's Ethics Committee.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.