Relating Invariants Coming From 3-component Torus Links

dc.contributor.advisor

Wong, Biji

dc.contributor.author

Valerio, Lorenzo

dc.date.accessioned

2025-04-29T01:58:13Z

dc.date.available

2025-04-29T01:58:13Z

dc.date.issued

2025-04-28

dc.department

Mathematics

dc.description.abstract

Given a 3-component torus link $T(p,q)\subset S^3$, we can construct a closed 3-manifold $\Sigma(p,q,2)$ called the double-branched cover of $S^3$ with branched set equal to $T(p,q)$. The aim of this thesis is to relate the Neumann-Siebenmann $\bar \mu$ invariant of $\Sigma(p,q,2)$ to the $d$-invariants coming from its Heegaard Floer homology.

dc.identifier.uri

https://hdl.handle.net/10161/32330

dc.language.iso

en

dc.rights.uri

https://creativecommons.org/licenses/by-nc-nd/4.0/

dc.subject

Low-dimensional topology

dc.subject

Knot Theory

dc.title

Relating Invariants Coming From 3-component Torus Links

dc.type

Honors thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_dukespace.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format