Secondary Terms in Asymptotics for the Number of Zeros of Quadratic Forms

Loading...

Date

2020

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

150
views
364
downloads

Abstract

Let $F$ be a non-degenerate quadratic form on an $n$-dimensional vector space $V$ over the rational numbers, and let $J$ be the symmetric matrix associated to $F$. One is interested in counting the number of zeros of the quadratic form whose coordinates are restricted in a smoothed box of size $B$. Heath-Brown gave an asymptotic for this question of the form: $c_1 B^{n-2} + O_{J,\epsilon}(B^{(n-1+\delta)/2+\epsilon})$, for any $\epsilon > 0$ and dim$V \geq 5$, where $c_1 \in \mathbb{C}$ and $\delta=0$ or $1$, according as $n$ is odd or even. For dim$V = 3$ and dim$V = 4$, Heath-Brown also gave similar asymptotics. More recently, Getz gave an asymptotic of the form: $c_1 B^{n-2} + c_2 B^{n/2} + O_{J,\epsilon}(B^{n/2+\epsilon-1})$ when $n$ is even, in which $c_2 \in \mathbb{C}$ has a pleasant geometric interpretation. We consider the case where $n$ is odd with diagonal unimodular $J$ and give an analogous asymptotic of the form: $c_1 B^{n-2} + c_2 B^{(n-1)/2} + O_{J,\epsilon}(B^{n/2+\epsilon-1})$. We use the circle method and work classically to exploit Gauss sums and find Dirichlet characters that fit into the odd degree case. We also provide an explicit description of the Dirichlet series arisen during the investigation, which is useful in applications. It turns out that the geometric interpretation of the constant $c_2$ of the asymptotic in the odd degree and even degree cases is strikingly different.

Department

Description

Provenance

Subjects

Mathematics

Citation

Citation

Tran, Thomas Huong (2020). Secondary Terms in Asymptotics for the Number of Zeros of Quadratic Forms. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20880.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.