Alternative splicing in multiple sclerosis and other autoimmune diseases.

Loading...
Thumbnail Image

Date

2010-07

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

411
views
194
downloads

Abstract

Alternative splicing is a general mechanism for regulating gene expression that affects the RNA products of more than 90% of human genes. Not surprisingly, alternative splicing is observed among gene products of metazoan immune systems, which have evolved to efficiently recognize pathogens and discriminate between "self" and "non-self", and thus need to be both diverse and flexible. In this review we focus on the specific interface between alternative splicing and autoimmune diseases, which result from a malfunctioning of the immune system and are characterized by the inappropriate reaction to self-antigens. Despite the widespread recognition of alternative splicing as one of the major regulators of gene expression, the connections between alternative splicing and autoimmunity have not been apparent. We summarize recent findings connecting splicing and autoimmune disease, and attempt to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open new avenues for therapy.

Department

Description

Provenance

Citation

Scholars@Duke

Somarelli

Jason Andrew Somarelli

Assistant Professor in Medicine
Gregory

Simon Gray Gregory

Margaret Harris and David Silverman Distinguished Professor

Dr. Gregory is the Margaret Harris and David Silverman Distinguished Professor and Director of the Brain Tumor Omics Program in the Duke Department of Neurosurgery, the Vice Chair of Research in the Department of Neurology, and Director of the Molecular Genomics Core at the Duke Molecular Physiology Institute. 

As a neurogenomicist, Dr. Gregory applies the experience gained from leading the sequencing of chromosome 1 for the Human Genome Project to elucidating the mechanisms underlying multi-factorial diseases using genetic, genomic, and epigenetic approaches. Dr. Gregory’s primary areas of research involve understanding the molecular processes associated with disease development and progression in brain tumors and Alzheimer’s disease, drug induced white matter injury repair in multiple sclerosis, and the characterization of lesion microenvironmental changes in MS.

He is broadly regarded across Duke as a leader in the development of novel single cell and spatial molecular technologies towards understanding the pathogenic mechanisms of disease development. Dr. Gregory is also the Section Chair of Genomics and Epigenetics at the DMPI and Director of the Duke Center of Autoimmunity and MS in the Department of Neurology.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.