Robust and scalable unsupervised learning via landmark diffusion, from theory to medical application

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

116
views
117
downloads

Abstract

Biomedical time series contain rich information about human systems, however, effective algorithms for analyzing long-term physiological time series have not yet been developed because of the huge volume size, high dimensionality and large noise nature of the data. Motivated by such challenging task, we proposed a novel spectral embedding algorithm, which we coined Robust and Scalable Embedding via Landmark Diffusion (ROSELAND). The solution is a generic and not limited to analyze physiological waveforms. In short, we measure the affinity between two points via a set of landmarks, which is composed of a small number of points, and ``diffuse'' on the dataset via the landmark set to achieve a spectral embedding. The algorithm is applied to study the arterial blood pressure waveform dynamics during a liver transplant operation lasting for 12 hours long. In addition, we show that Roseland is not only numerically scalable, but also preserves the geometric properties via its diffusion nature under the manifold setup; that is, we theoretically explore the asymptotical behavior of Roseland under the manifold setup, and provide a L-infinity spectral convergence with a rate. Moreover, we offer a high dimensional noise analysis with the help of Gaussian approximation, and show that Roseland is robust to noise.

Department

Description

Provenance

Citation

Citation

Shen, Chao (2021). Robust and scalable unsupervised learning via landmark diffusion, from theory to medical application. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/22979.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.