Viewpoint Adaptation for Person Detection

Thumbnail Image


Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


An object detector performs suboptimally when applied to image data taken from a viewpoint different from the one with which it was trained. In this paper, we present a viewpoint adaptation algo- rithm that allows a trained single-view person detector to be adapted to a new, distinct viewpoint. We first illustrate how a feature space trans- formation can be inferred from a known homography between the source and target viewpoints. Second, we show that a variety of trained clas- sifiers can be modified to behave as if that transformation were applied to each testing instance. The proposed algorithm is evaluated on a new synthetic multi-view dataset as well as images from the PETS 2007 and CAVIAR datasets, yielding substantial performance improvements when adapting single-view person detectors to new viewpoints while increas- ing the detector frame rate. This work has the potential to improve person detection performance for cameras at non-standard viewpoints while simplifying data collection and feature extraction





Published Version (Please cite this version)


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.