Emerging arboviruses and implications for pediatric transplantation: A review.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Recent years have brought a rise in newly emergent viral infections, primarily in the form of previously known arthropod-transmitted viruses that have increased significantly in both incidence and geographical range. Of particular note are DENV, CHIKV, and ZIKV, which are transmitted mostly by Aedes species of mosquitoes that exhibit a wide and increasing global distribution. Being important pathogens for the general population, these viruses have the potential to be devastating in the international transplant community, with graft rejection and death as possible outcomes of infection. In this review, we discuss the current state of knowledge for these viruses as well as repercussions of infection in the solid organ and HSCT population, with a focus, when possible, on pediatric patients.





Published Version (Please cite this version)


Publication Info

Freeman, Megan Culler, Carolyn B Coyne, Michael Green, John V Williams and Laurie A Silva (2019). Emerging arboviruses and implications for pediatric transplantation: A review. Pediatric transplantation, 23(1). p. e13303. 10.1111/petr.13303 Retrieved from https://hdl.handle.net/10161/22579.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Carolyn Coyne

George Barth Geller Distinguished Professor of Immunology

We study the pathways by which microorganisms cross cellular barriers and the mechanisms by which these barriers restrict microbial infections. Our studies primarily focus on the epithelium that lines the gastrointestinal tract and on placental trophoblasts, the cells that comprise a key cellular barrier of the human placenta. Our work is highly multidisciplinary and encompasses aspects of cell biology, immunology, and microbiology. Our long-term goals are to identify pathogen- and host-specific therapeutic targets to prevent or treat microbial infections and ultimately to alleviate the morbidity and mortality caused by these infections.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.