Nonsmooth Dynamics in Two Interacting, Impacting Pendula

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

388
views
1254
downloads

Abstract

This thesis reviews the experimental investigation of a non-smooth dynamical system consisting of two pendula; a large pendulum attached to a frame with an impact wall, and a small pendulum, which shares its axis of rotation with the large pendulum and can impact against the large pendulum. The system is forced with a sinusoidal horizontal motion, and due to the nonlinearities present in pendula as well as the discontinuous forcing from impacts, exhibits a wide range of behavior. Periodic, quasi-periodic, and chaotic responses all are possible, hysteresis is present, and grazing bifurcations allow for spontaneous change of behavior and the appearance of chaotic responses without following a traditional route to chaos. This thesis follows from existing non-linear dynamics research on forced pendula, impacting systems (such as a bouncing ball) and doubly impacting systems (ball bouncing on top of a bouncing ball).

Description

Provenance

Citation

Citation

George, Christopher Michael (2012). Nonsmooth Dynamics in Two Interacting, Impacting Pendula. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5799.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.